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In modern electronic devices, both consumer and industrial, wireless technology is

quickly becoming a must-have feature; wireless Bluetooth technology is now standard

in almost all mobile phones, laptops and other devices. However, despite its preva-

lence, Bluetooth as a technology remains too expensive and/or impractical to integrate

into embedded products and systems which lack large amounts of processing power and

memory.

While some existing embedded Bluetooth stacks are available, these remain expensive,

limited, and/or closed-source, which otherwise prevent their use in applications where

Bluetooth technology would be both desired and applicable.

To combat this deficiency in the marketplace, the aim of this project is to design and

produce a free, open source, small footprint Bluetooth stack aimed to suit small em-

bedded environments. This project will allow for Bluetooth technology to be directly

integrated into small scale products at a low cost, while remaining fully functional and

extensible.
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Chapter 1

Overview

In almost all modern portable consumer devices, Bluetooth plays a large role; it is

available in the vast majority of mobile phones and their associated accessories, in cars,

in laptops and, most recently, in mobile tablet PCs. Bluetooth as a technology gives

system designers a low power wireless communications standard from the baseband up

to the higher level abstract services, allowing implementing devices to communicate with

one another in a manufacturer-independent manner. This freeing of consumers from the

proprietary short range wireless solutions (such as ZigBee) has helped make Bluetooth

the wireless communication system of choice for many applications.

1.1 Project Background

Despite this ubiquity, Bluetooth remains firmly in the realm of systems containing large

amounts of RAM and FLASH memories, processing power and—in many cases—full

operating system stacks. For small-scale embedded devices with tiny 8-bit processors,

clock speeds in the tens of MHz (or even less) and RAM measured in kilobytes, Bluetooth

remains impractical; either due to its expense or the lack of suitable software.

However, existing solutions do exist. System designers can integrate off-the-shelf Blue-

tooth solutions in their products; small hardware modules containing the Bluetooth

baseband and a fixed-function microprocessor. This microprocessor then handles the

complex onion-like layers of the various Bluetooth stack components, off loading the

computational load and implementation complexity from the main system processor.

These modules are generally ridgid in their functionality however, making them un-

suitable in applications where a specific or custom Bluetooth services are required. In

addition, such modules are generally significantly more expensive than the product’s

1



Chapter 1. Overview 2

main processor, negating its cost/benefit ratio where a more powerful system processor

could be substituted to manage the entire application including the Bluetooth compo-

nent.

These turn-key modules are made all the less attractive when one considers the cost of

a raw Bluetooth baseband IC module. Without an integrated processor to manage the

software stack, these are generally available from multiple vendors at costs measured in

the sub-US$5 range. This indicates that the main cost of the complete modular solutions

lies not in the physical hardware, but the IP component of the Bluetooth software stack.

If such a stack could be made widely available for use in embedded systems, this fixed-

cost vendor lock-in could be avoided and cheaper Bluetooth enabled systems developed

for both hobbyist and commercial use.

1.2 Project Brief

To help fill the identified gap in the marketplace for a cheap, open source Bluetooth stack

aimed at the low to mid-range embedded market, it is proposed that a new stack be

designed from scratch specifically for this market segment. This stack would offer a base

amount of functionality suitable for integration into new or existing embedded systems,

to extend the system functionality to include wireless Bluetooth communications.

At a minimum, a functional Bluetooth stack needs to have at least four components:

1. A Physical Data Transport layer to and from a connected Bluetooth physical

baseband transceiver IC

2. An implementation of the Bluetooth specification’s HCI layer for the establish-

ment and management of physical connections to and from remote devices

3. An implementation of the Bluetooth specification’s L2CAP layer for the estab-

lishment and management of logical channels within an established connection

4. One of more Bluetooth Services on top of the L2CAP layer to implement func-

tionality such as the Service Discovery Protocol (SDP)

These components, when put together, form the basis of a minimal Bluetooth stack (see

Figure 1.1). Additional services may or may not be added on top of the stack in parallel

with the mandatory SDP protocol to expose local device functionality and interact with

remote devices.
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Figure 1.1: Basic components that form a typical Bluetooth Stack.

As the usefulness of an abstract piece of software is inherently low without a suitable

demonstration platform, a second component of the project will be to design, develop

and prototype a functional and practical device which uses the created stack. It is

proposed that this hardware component be in the form of a small “ExplorerBot” robot

(see Figure 1.2), able to stream local sensor data wirelessly to a remote PC for real-

time graphing purposes, and to allow for remote wireless control over a Bluetooth link

to a consumer Bluetooth control device, such as a current generation Game Console

controller (Wii or Playstation 3 ). If possible, these two functions should be combined

to allow for multiple simultaneous connections, allowing for remote control at the same

time as the sensor data is logged remotely.

Figure 1.2: Diagram of the proposed robot platform.
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With the combination of the software (the stack) and hardware (the robot) components

of this project, the final design should offer a complete system and test platform which

can be reproduced wholesale, modified to suit a particular application or used as a

reference implementation for other projects.

1.3 Design Goals

The design goals of the project were split into two distinct parts, consisting of the

software Bluetooth Stack implementation, and the physical robot hardware design. This

separation of the testing platform hardware goals from those of the logical Bluetooth

stack allowed for the clearest representation of the project as a whole.

1.3.1 Software Goals

For such a stack to be useful in an embedded environment, it must be able to conform

to the restrictions such an environment imposes. Specifically, the completed stack must

minimize its compiled and working set footprints, reduce or eliminate the need for dy-

namic memory allocation, and minimize its hardware dependencies to suit as wide a

range of processors of differing capabilities as possible.

The design goals of the complete software stack were therefore set to:

• Use as little RAM as possible

• Compile to as small a binary as is practical

• Offer a framework upon which services can be added to suit a particular application

• Provide asynchronous events to which the user application can respond to

• Allow for a variable number of simultaneous connections and logical channels

to/from remote devices

• Have no requirement for dynamic memory allocation on the heap

• Allow for integration into an optional RTOS, but support stand-alone operation

• Be fully decoupled from the physical transport to the Bluetooth Adapter

• Be endian-correct regardless of native processor endianness

• Maintain a level of compatibility with Bluetooth Version 2.1 specification as main-

tained by the Bluetooth Special Interest Group (SIG)
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While at the point of the project’s design and development a newer Bluetooth 3.0 version

standard was available, a decision was made to implement the slightly older—and far

more popular—version 2.1 of the Bluetooth specification. This decision was made due to

the abundance of cheap Bluetooth 2.1 compatible hardware already of the market (and,

conversely, the lack of cheap and widely available Bluetooth 3.0 hardware). In addition,

the aim of the project was set to produce a compatible rather than fully compliant

stack, due to the significantly increased development complexity of the latter for little

additional benefit.

1.3.2 Hardware Goals

To make a useful, visual and functional testing platform, a decision was made to produce

a small, battery powered robot. This robot would serve as both a testing platform for

the completed stack to verify its correct operation in a real-world environment during

development, and to function as a reference application of the completed stack.

In order to fully demonstrate the capabilities of the Bluetooth stack, the robot would

have to include both locally initiated Bluetooth connections, as well as accept remotely

initiated connections. In addition to this requirement, data would have to be both re-

ceived and sent to and from a remote device to demonstrate full duplex communications.

A set of design goals was thus created for the robot:

• Allow the user to initiate a connection to a remote device via the robot

• Accept incoming connections from remote Bluetooth devices, including some level

of authentication

• Consume data received from remote Bluetooth device(s) via one or more Bluetooth

services

• Produce data to be transmitted to remote Bluetooth device(s) via one or more

Bluetooth services

• Visually indicate status and debug messages via a display mechanism, for debug-

ging

• Allow for the robot to be remotely driven via a set of PWM controlled DC motors



Chapter 2

Existing Implementations

Before work was started on the proposed software Bluetooth stack implementation, the

existing field of Bluetooth stacks (both commercial and non-commercial) were evaluated

to determine what the market currently offers.

2.1 Classes of Existing Stacks

During the course of the project background research into existing Bluetooth stacks, two

distinct classes of stack were observed, each with distinct assumptions and capabilities:

• Operating System based Stacks, which assumed that they would be run on

top of a complex full-featured OS, containing a kernel- and user-space, virtualized

memory, synchronisation primitives, etc.

• Embedded Stacks, which assumed no OS was present, but nevertheless made

assumptions as to the environment’s capabilities for dynamic memory allocation

These two classes of stacks show two possible approaches to an implementation; one,

the designer may write a stack around an existing Operating System API, or two, the

designer can assume a “freestanding” or “bare metal” environment, with either no, or

only a minimal, RTOS being present.

2.2 Existing Bluetooth Stacks

Below the discovered existing Bluetooth stacks are listed in parametric form for each

class of stack for ease of reference.

6
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2.2.1 Operating System Stacks

Stack Name Operating System Commercial

FreeBSD Stack FreeBSD No

Affix Stack Linux No

BlueZ Stack Linux No

Apple Stack MacOS Yes

BlueFritz! Stack Windows Yes

CSR Harmony Stack Windows Yes

FreeBT Stack Windows No

Microsoft Stack Windows Yes

Toshiba Stack Windows Yes

Widcomm Stack Windows Yes

Table 2.1: Parametric table of existing OS based Bluetooth stacks.

As expected, the vast majority of existing OS based Bluetooth stacks are targeted to-

wards the Microsoft Windows operating system, due to its large market share. In almost

all cases, the existing stacks were found to support a rich number of Bluetooth services,

in both device and server roles. While the majority of the Bluetooth stacks on the mar-

ket are commercialized (i.e. require payment or hardware purchase for a license to use

them) there are still several free and open source stacks available for the various Linux

and BSD kernels.
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2.2.2 Embedded Stacks

Stack Name Commercial

BlueCode+ Stack Yes

BlueLet Stack Yes

BlueMagic Stack Yes

Bluetopia Stack Yes

BTStack Stack No

ClarinoxBlue Stack Yes

CSR Synergy Stack Yes

EtherMind Stack Yes

Jungo BTware Stack Yes

lwBT Stack No

Mecel Betula Stack Yes

Symbian OS Stack Yes

Table 2.2: Parametric table of existing embedded Bluetooth stacks.

Contrasting with the OS based stacks discussed previously, almost all Bluetooth stacks

aimed at the embedded market today were found to be exclusively commercialized,

requiring large payments and license agreements before they could be integrated into

existing designs. Of note in this area are the BTStack and lwBT embedded Bluetooth

stacks, which were both found to be both free and open source, but suffered from the

constraints of RTOS dependencies in the case of the former, and incompleteness in the

case of the latter.



Chapter 3

Bluetooth Stack Implementation

The development of the Bluetooth stack followed a bottom-up development methodol-

ogy, designing and writing each software layer in sequence from the lowest layer first,

to the highest and most abstracted layers last. This sequence ensured that each layer

was functionally correct and could be verified before the higher layers were implemented.

This suited the development of the Bluetooth stack—and, indeed, most software stacks—

as each higher software layer is dependant solely on lower logical layers in the stack.

3.1 Software Overview

The software layers implemented in the completed Bluetooth stack are shown in Figure

3.1.

Figure 3.1: Completed layers of the Bluetooth stack.

Each software layer was implemented as a separate pair of source code module files,

written in the C language and targeted towards the C99 language specification. Config-

uration for the stack is located in the file BluetoothCommon.h, which must be included

in the user application to operate the stack.

9
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By default, only the Bluetooth stack core (giving the HCI and L2CAP layers) is in-

tegrated; services must be linked into the stack manually via the provided event and

callback routines (see later in this chapter) to provide service-level functionality on top

of the base stack functionality. This includes the SDP server service; while generally

a core requirement of most Bluetooth devices, it may be omitted in applications not

exposing server role services to save space in the resulting application binary.

3.2 Design Considerations

A number of design restrictions were placed on the development of the Bluetooth stack;

these ensured that the completed stack remained modular, extensible and suitable for in-

tegration in a wide range of embedded systems with various capabilities and, conversely,

limitations. As an unfortunate but expected side effect, a number of these restrictions

complicated the software development process significantly.

3.2.1 No Heap Memory Allocations

The largest restriction placed on the stack design was the requirement of static and

stack allocated memory allocation only — no dynamic heap allocated memory was to

be used via the usual malloc() and free() functions from the libc library. Most embedded

environments contain three types of memory allocations:

1. Static Allocations, including global variables and static qualified variables.

2. Stack Allocations, automatically populated to store local automatic variables,

function parameters, return addresses, etc.

3. Heap Allocations, persistent dynamic allocations manually managed by the user

application.

However, for significantly memory constrained systems, heap allocations are generally

avoided due to the possibility of memory fragmentation; large numbers of differently-

sized allocations and deallocations may cause fragmented holes to appear within the heap

environment, causing allocation exhaustion to occur even if sufficient (raw) memory is

available for an allocation request. In addition, dynamic memory complicates the formal

analysis of a program, making memory requirements harder to judge, and thus harder

to determine whether a given set of firmware will operate correctly within a specified

environment without further in-depth analysis. In large embedded environments (ones



Chapter 3. Bluetooth Stack Implementation 11

with virtual memory management, and/or a large heap space) these problems are less

of an issue and dynamic memory may be preferable for its simplicity.

The design of embedded stacks based on a no-heap-allocation strategy is a complex one,

requiring certain trade-offs to be made. In the case of the Bluetooth stack presented

here, a major side-effect of this decision was the need to fix the maximum number of

simultaneous HCI device connections, L2CAP channel connections, and other queue-

and list-like data structures within each instance of the stack. A major downside to this

approach is the increased complexity of packet buffering and re-assembly, as fixed-size

buffers must be used.

3.2.2 Endianness Correction

A second complication based on the physical constraints from the execution environment

is the native endianness of the processor hardware, i.e., the order in which multiple-byte

data values are stored and interpreted inside the processor registers. Depending on the

execution architecture, data values may be represented in Big Endian (most significant

byte at the lowest address) or Little Endian (least significant byte at the lowest address)

format within the CPU. Data transmitted and received at the local device to remote

device boundary must undergo a encoding conversion if the endianness of the source and

sink do not match.

In the case of the Bluetooth 2.1 specification [1], this was further complicated by the

various layers; some layers used Little Endian encoding for exchanged data, while oth-

ers selected a Big Endian format. To perform the correct encoding/decoding on each

platform, a set of conversion macros were implemented at points where multi-byte val-

ues were exchanged. This ensured that regardless of the native endian format of the

architecture the stack is compiled to, multi-byte values will be interpreted correctly.

3.2.3 Physical Transport Independence

As the Bluetooth 2.1 specification outlines a several possible physical transports [2] of

HCI packets between the Bluetooth transceiver silicon and the application microcon-

troller, it was important that the physical transport layer be made independent from

the rest of the stack. By making no assumptions about the form of transport protocol

used to transfer packets to and from the attached Bluetooth silicon, the user applica-

tion is free to implement their own transport mechanism without having to modify the

internals of the stack. One instance of the stack may run across a USB connection
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to an attached Bluetooth module, while another may simultaneously connect to the

microcontroller over a UART link.

3.2.4 Bluetooth Specification Compatibility

For a software stack to be suitable for general use, it must be designed around, and

undergo a series of tests to ensure compatibility with, a particular version of the protocol

specification. Without a fixed version of a specification, correctness of the finished stack

and compatibility with other implementations of the same technology cannot be assured.

As a compliant stack would require extensive development and expensive certification

procedures, the stack was instead aimed to be compatible with version 2.1 of the Blue-

tooth specification. This subtle difference in the terminology indicates a large difference

in the restrictions around the exact implementation. While a compliant stack must be

verified against the entire specification and rigorously tested to ensure exact confor-

mance [3], a compatible stack must only work with (most) other devices implementing

their own compliant or compatible stacks of the same protocol version.

In the future the stack could be made conformant if desired, however for the purposes

of the project only protocol compatibility was tested.

3.2.5 Multiple Stack Instances

For maximum utility, the stack was designed to allow for multiple simultaneous stack

instances. This was implemented to allow for unusual Bluetooth usage scenarios where

more than one transceiver is desirable in a single system, either for security, wireless

signal coverage or bandwidth reasons. Each physical transceiver is allocated a logical

stack instance, capable of sustaining one or more simultaneous connections, and one

or more logical channels between devices. This flexibility ensures that the majority of

usage scenarios are covered by the stack’s implementation.

Code-wise, the multiple stack functionality is implemented as a common first parameter

to all functions within the stack, BT_StackConfig_t* const StackState. This parameter is used

to pass around a reference to the stack instance being operated upon, and is somewhat

analogous to the this property in C++ classes, if the entire stack was wrapped in a

single class. As the stack was written in the C language which lacks Object Orientated

language capabilities, this form of basic polymorphism was implemented manually. For

each physical transceiver, the user application is expected to declare a new instance of

the BT_StackConfig_t structure within their code, and pass this to the main Bluetooth stack

management routines (see Listing 3.1).
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static BT_StackConfig_t BluetoothAdapter_Stack =

{

.Config =

{

.Class = (DEVICE_CLASS_SERVICE_CAPTURING |

DEVICE_CLASS_MAJOR_COMPUTER |

DEVICE_CLASS_MINOR_COMPUTER_PALM),

.Name = "Bluetooth Robot",

.PINCode = "0000",

.Discoverable = true ,

.PacketBuffer = EXTERNAL_MEMORY_START ,

}

};

Listing 3.1: Configuration example of a Bluetooth stack instance.

3.2.6 Multiple Simultaneous Connections and Channels

The HCI connections and L2CAP channels for each stack instance are implemented as an

pair of object pools within the BT_StackConfig_t structure; L2CAP channel objects within

the pool are shared amongst all established HCI connections — for example, one HCI

connection may use all the available L2CAP channels, or two connections may share

the pool equally. This design decision allows the full pool of L2CAP channel objects

to be used by the stack regardless of the HCI connection requesting them. Figure 3.2

illustrates a single stack instance with a typical usage scenario, with two of the stack’s

HCI connection objects containing established connections, each with several L2CAP

channel objects associated with the connection from the channel object pool.

Figure 3.2: HCI Connection and L2CAP object pools within a single instance of the
Bluetooth stack.

To positively link one used L2CAP channel instance to its parent HCI connection object,

the HCI connection’s handle property is stored in the L2CAP channel object as a primary

key. This handle value, allocated uniquely by the external Bluetooth HCI controller
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silicon when a new HCI connection is made, is then used to locate the HCI connection

object within a stack instance from an established channel instance. While a pointer

to the parent HCI object would offer a faster method of locating the associated HCI

connection, this would tightly couple the HCI layer with the L2CAP layer as the former

would need to alter the latter’s objects if and when HCI connections are terminated.

As the stack does not use heap-based dynamic memory allocation, this approach ensures

that the stack contains similar levels of flexibility to a dynamically allocated object

approach, with only a minimal overhead. The maximum size of each object pool is set

via the Bluetooth Stack’s BT_MAX_DEVICE_CONNECTIONS and BT_MAX_LOGICAL_CHANNELS configuration

defines.

3.2.7 Minimal Memory Usage

While large embedded systems may run the completed Bluetooth stack, the design

decisions made during its development were primarily aimed at ensuring the best per-

formance and smallest footprint in severely resource-constrained microcontrollers. This

resulted in the stack being optimised for small systems; only the minimal attributes

required to establish and maintain connections are stored by the stack. One example

of these optimizations is in the event system (described in detail later in this chapter)

implementation: rather than implementing a callback registration system for each event,

named callbacks are used instead. Various portions of the Bluetooth stack expect the

user application to provide callback and event functions using names and prototypes

defined in the stack header files.

This named callback function system reduces the memory footprint of the stack, as the

callback addresses do not need to be stored in RAM at runtime, and the compiler does

not need to inflate the binary with additional functions to manage the callback function

registrations.

3.3 Software Layer Implementation

In this section, the design and implementation of each individual software layer that

comprises the complete Bluetooth stack is described in detail.
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3.3.1 Physical Transport

While not part of the completed stack proper, a functional USB transport layer was

completed for the project as an sample implementation in the user application, and

hooked into the stack via the provided APIs. The Bluetooth USB transport [4] requires

the use of four logical USB communication channels (“pipes” in USB terminology) to

the USB Bluetooth adapter; the mandatory control pipe for HCI commands, a pair of

Bulk type pipes for data packets to and from the controller, and an Interrupt pipe for

HCI event notifications.

Figure 3.3: Logical USB pipes within the Bluetooth USB physical transport.

Data and event packets received from the USB Bluetooth adapter’s logical pipes are

written into the packet buffer indicated in the stack instance configuration, and dis-

patched to the stack via the Bluetooth_ProcessPacket() function. There they are processed

internally via the Bluetooth stack, moving up the HCI, L2CAP and user-provided ser-

vice layers as appropriate. The matching CALLBACK_Bluetooth_SendPacket() callback function

from the stack implements the data and HCI control packet transmission code back to

the adapter, sourcing the generated packets from the same packet buffer location.

3.3.2 HCI Layer

Sitting at the lowest level of the core stack, the HCI layer performs the main role of

managing connections between Bluetooth devices, as well as processing events from

the Bluetooth controller, and data encapsulation/decapsulation for transport over the

Bluetooth link. To perform these tasks, the HCI layer is invoked each time a data packet

is received or ready to be sent, an event is received from the controller, or during idle

periods of the user application for general connection management.

The current HCI layer state is implemented as a state machine, which is automati-

cally advanced through the appropriate states on stack initialization to configure the
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attached Bluetooth device, according to the configuration parameters set in the stack

instance configuration structure. These states, shown in Listing 3.2, correspond to the

asynchronous initialization steps performed by the stack when the HCI layer is reset.

enum BT_HCIStates_t

{

HCISTATE_Init_Reset = 0,

HCISTATE_Init_ReadBufferSize = 1,

HCISTATE_Init_GetBDADDR = 2,

HCISTATE_Init_SetLocalName = 3,

HCISTATE_Init_SetDeviceClass = 4,

HCISTATE_Init_SetScanEnable = 5,

HCISTATE_Idle = 6,

};

Listing 3.2: State machine states for the HCI management layer.

The HCI baseband controller management in the HCI layer is split into two distinct

parts; an event processing routine to process commands and manage transitions between

HCI states, and the state machine processing routine to execute commands based on the

current HCI state. As commands must only be sent once on the transition between HCI

state machine states, a flag StateTransition in the HCI state structure of each Bluetooth

stack instance indicates if a state transition has occurred within the event processing

function, so that the state machine processor can issue the appropriate responses on

transition edges only.

State timeouts within each of the HCI states is managed via a TicksElapsed counter in

the HCI state structure of each Bluetooth stack instance. This counter, incremented

each time the HCI layer is notified by the user application of a tick period elapsing,

forces a resend of the current HCI state’s command by forcing the state transition flag

StateTransition high when the timeout period has expired. This system ensures that HCI

commands dropped during the initialisation of the module are properly re-issued.

If a connection is requested by a remote device, the HCI layer will issue a

CALLBACK_Bluetooth_ConnectionRequest() callback into the user application, if space is available

within the HCI connection object pool. If no space is available (i.e. all HCI channel

objects are currently allocated for established connections) the connection request is

silently discarded with the Bluetooth error code HCI_ERROR_LIMITED_RESOURCES. If the user

application accepts the connection request, the stack will issue an acceptance response

to the remote device. If rejected, a suitable rejection notification is issued by the stack’s

HCI layer.

Authentication is currently implemented in a slave connection role only, as a PIN based

authentication. All sent connection requests and acceptance packets indicate that the

device requires a slave role in the connection establishment, indicating that the remote
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device is responsible for requesting the authentication PIN code from the user, which the

local stack then authenticates against the PIN code configured in each stack instance.

Inside the HCI layer, received data packets are stripped of their HCI layer headers

and passed upwards to the L2CAP layer for further processing. Packets sent from the

L2CAP layer to the HCI layer undergo the opposite process; a HCI layer packet header

is prefixed onto the packet contents and passed to the user application for transmission

to the Bluetooth controller.

As an implementation-specific detail, HCI connection destruction events (when an estab-

lished HCI connection is disconnected) are notified to the L2CAP layer via the internal

function Bluetooth_L2CAP_NotifyHCIDisconnection(). This ensures that all associated L2CAP

channels are correctly destructed once their host HCI connection is destroyed, to prevent

synchronisation issues and to ensure that the L2CAP object pool is freed of any dead

channel objects as soon as possible to prevent unnecessary pool exhaustion.

3.3.3 L2CAP Layer

The L2CAP layer, responsible for managing logical channels between devices for an es-

tablished connection, was implemented in an unusual manner; due to uncertainties of the

user application packet buffering scheme, the stack is not able to guarantee that packets

to be sent are buffered correctly. As the L2CAP layer is used to establish communication

channels between devices, it is essential that any issued channel configuration commands

are delivered correctly to the remote device; delays in the channel negotiation process

may cause communications to and from a remote device to fail. As a result, the L2CAP

layer implemented a special event buffering scheme to ensure the reliable issuing of re-

sponses to remote devices even if a packet fails to send due to the controller’s internal

buffers becoming full.

As L2CAP signalling packets (identifiable via their destination channel ID of 0x0001,

the defined ID for BT_CHANNEL_SIGNALING packets) are received by the L2CAP layer, the

request is processed and an event object created in the L2CAP Event Queue. This

queue, a fixed length queue of a size configured by the stack’s BT_MAX_QUEUED_L2CAP_EVENTS

configuration parameter, stores the events in a First-In, First-Out ordered manner within

each stack instance. The implementation of this queue is a simple flat array of event

structure elements, where inserted items are appended to the end of the last allocated

object in the array (see Figure 3.4). A separate PendingEvents property in the L2CAP

state structure is used to track the number of queued events.
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Figure 3.4: Insertion of a new L2CAP event into the tail of the object queue.

Event queue removal is performed by the moving of all queue items above the head of

the list leftwards in the array, to shuffle all entries one place towards the head of the

queue (see Figure 3.5). L2CAP event objects are only dequeued once the transport

layer confirms the transmission of the signalling packet request to the remote device.

In this manner, L2CAP events maintain a reliable transport regardless of the physical

transport’s ability to buffer excess packets.

Figure 3.5: Removal of the L2CAP event queue head item.

If too many L2CAP events are attempted to be added to the queue, the new event

allocation request will fail. This scheme will preserve existing events within the queue

at the expense of dropping newer events until space becomes available. Despite this

limitation, with an adequate queue size (of approximately 10 items for most applications)

the queue limit should never be exceeded under normal circumstances.

3.3.4 Bluetooth Services

The Bluetooth services designed as part of the project were implemented separately to

the stack core; they are designed to hook into the stack APIs if desired by the user
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application, however they are entirely separate entities which are not required to be

built with the stack core if not needed.

Bluetooth services can implement two possible roles; a client role, or a server role. It is

possible for services to implement both roles, however this is not a requirement of the

Bluetooth specification. Server role services (such as a Virtual Serial Port service server)

provide a function to remote Bluetooth devices on demand, while client role services

control remote service server instances (such as a termination application connecting to

a remote Virtual Serial Port service server.)

Each of the services designed for the stack use a common set of interface APIs; functions

are provided to the user application to notify the service of channel open/close events,

data packet reception, and other such common events. In addition, each service may or

may not expose a set of service-specific functions and callbacks, which can be used to

interact with the service’s functionality from the user application.

3.3.4.1 SDP Service

For service discovery to take place between devices, each device must implement the

Service Discovery Protocol service [5]. The SDP service exposes the capabilities and

characteristics of other services within the device, allowing remote systems to query the

server to determine what services a device implements, and their associated properties.

Other services may register themselves with the SDP service within a device, so that

remote Bluetooth devices may detect the existence of the second service and make use

of it if desired.

On large scale systems, SDP records are generally registered independently, and appro-

priate SDP records are built dynamically from the properties given to the SDP service

by other services within a device. This approach allows for attributes to be dynamically

added, removed and updated as required, however requires a variable amount of memory

to store the generated SDP records.

By contrast, the project’s Bluetooth stack uses a novel static record initialization ap-

proach for SDP service attributes; services are required to contain pre-built SDP at-

tribute records, which are then registered wholesale with the SDP server. While this

requires complex SDP attribute tables to be built inside each service manually, this elim-

inates the need for costly run-time dynamic service record management and dynamic

memory allocation.

An example of such a static SDP attribute record is shown in Listing 3.3. Here, a single

UUID attribute is encoded in the correct format structure for the SDP server.
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static const struct

{

SDP_ItemSequence8Bit_t UUIDList_Header;

struct

{

SDP_ItemUUID_t SerialPortUUID;

} UUIDList;

} ATTR_PACKED PROGMEM SerialPort_Attr_ServiceClassIDs =

{

SDP_ITEMSEQUENCE8BIT(sizeof(SerialPort_Attr_ServiceClassIDs.UUIDList)),

{

SDP_ITEMUUID(SP_CLASS_UUID),

}

};

Listing 3.3: Example of a statically initialized SDP attribute.

In addition to each individual SDP attribute structure, a single Service Attribute Table

must be built for each service requiring SDP registration. Listing 3.4 shows an example

of a service’s complete attribute table. When queried, the SDP server will examine

the attributes contained in this table to determine what (if any) attributes need to be

returned to the requesting remote Bluetooth device.

static const SDP_ServiceAttributeTable_t PROGMEM SerialPort_Attribute_Table [] =

{

{ SDP_ATTRIBUTE_ID_SERVICERECORDHANDLE ,

&SerialPort_Attr_ServiceHandle },

{ SDP_ATTRIBUTE_ID_SERVICECLASSIDS ,

&SerialPort_Attr_ServiceClassIDs },

{ SDP_ATTRIBUTE_ID_PROTOCOLDESCRIPTORLIST ,

&SerialPort_Attr_ProtocolDescriptor },

{ SDP_ATTRIBUTE_ID_BROWSEGROUPLIST ,

&SerialPort_Attr_BrowseGroupList },

{ SDP_ATTRIBUTE_ID_LANGUAGEBASEATTROFFSET ,

&SerialPort_Attr_LanguageBaseIDOffset },

{ SDP_ATTRIBUTE_ID_SERVICENAME ,

&SerialPort_Attr_ServiceName },

{ SDP_ATTRIBUTE_ID_SERVICEDESCRIPTION ,

&SerialPort_Attr_ServiceDescription },

};

Listing 3.4: Example of a statically initialized SDP attribute table.

Finally for each service, a SDP entry node must be created. This master node is used

to register the entire service and associated SDP attribute table with the SDP server.

Listing 3.5 contains a sample SDP node.

SDP_ServiceEntry_t ServiceEntry_RFCOMMSerialPort =

{

.Stack = NULL ,

.TotalTableAttributes = (sizeof(SerialPort_Attribute_Table) /

sizeof(SerialPort_Attribute_Table [0])),

.AttributeTable = SerialPort_Attribute_Table ,

};

Listing 3.5: Example of a statically initialized SDP service entry node.
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The SDP server maintains a linked list of registered services internally, using the exter-

nally created SDP node entry instances. As services are registered and removed, these

nodes are inserted and removed from the master SDP service list. When the SDP server

is queried by a remote device, the server will transverse the list, looking for matching

attributes to the request to return back to the initiating device.

3.3.4.2 RFCOMM Service

For virtual serial port functionality, the RFCOMM service was implemented as a server

role; remote devices can then request logical channels to be opened in the service, so that

data can be exchanged. The RFCOMM service requires the creation of a logical channel

multiplexer; this allows a single established L2CAP channel to multiplex a collection

of one or more RFCOMM data channels simultaneously. In the implementation of this

service, the multiplexer was created using a static array of RFCOMM_Channel_t structure

instances, each of which represented a virtual channel on the multiplexer.

As the RFCOMM service is not tied directly into the core Bluetooth stack, the chan-

nel object array is not associated with a specific Bluetooth stack instance, rather, the

channel object pool is shared amongst all Bluetooth stack instances in the system (see

Figure 3.6). The first time the service is initialised, the entire channel object pool is

reset; in subsequent initializations, only channel objects currently associated to the stack

instance being reset will be deallocated. This allows the RFCOMM service resources

to be shared with all Bluetooth instances, without having to have multiple per-instance

channel pools. The maximum number of simultaneously open RFCOMM channels is set

via the RFCOMM_MAX_OPEN_CHANNELS configuration parameter.

Figure 3.6: RFCOMM channel object pool, shared amongst two Bluetooth stack
instances.
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While newer versions of the RFCOMM service specification (i.e. versions 1.1 onwards)

add a mandatory “credit based” flow control scheme to control the flow of data in and

out of each logical channel, versions 1.0B and earlier do not contain these additions.

As most RFCOMM clients are compatible with either version (due to the prevalence

of devices based on the older specification) the implemented service was based on the

earlier protocol version [6] for simplicity.

3.3.4.3 HID Service

Due to time limitations of the project, the HID service implementation was extremely

minimal; only a basic implementation of the HID 1.0 profile [7] was designed and coded,

so that received packets could be decoded and used to control the robot. As a client

role version of the SDP server was not attempted, the HID service was unable to query

the remote HID device’s service tables for the HID descriptor, used to determine how

to decode received HID data packets. This unfortunately resulted in the final robot

firmware needing to hard-code the packet interpretation for each device type based on

the length of the received data packet.

3.4 Integration into User Applications

In order to implement the Bluetooth stack into a user application, the entire base stack

(excluding the services) must be added to the project for compilation. The user con-

figuration and interface to the stack is made via the header file BluetoothCommon.h.

User applications attempting to use the stack must be compiled using the C99 language

specification, and a GCC compiler derivative.

3.4.1 Management Functions

The following functions must be executed by the user application to operate the stack

correctly.

void Bluetooth_Init(BT_StackConfig_t* const StackState);

The stack initialization function must be called once on system startup, to initialize a

given instance of the stack ready for use.

bool Bluetooth_ManageConnections(BT_StackConfig_t* const StackState);
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This function must be executed periodically to manage existing connections and reply

to any pending L2CAP or HCI events. The exact frequency this function must be called

at is not a concrete value, rather, it should be called as fast as the user application will

allow. Failure to call this function fast enough will introduce latency when establishing

and maintaining new connections and logical channels or, in extreme cases, will cause

connection and channel negotiations to fail.

void Bluetooth_ProcessPacket(BT_StackConfig_t* const StackState ,

const uint8_t Type);

When a new packet is received from the Bluetooth controller, this function must be

invoked. Note that the received packet data should be stored into the packet buffer set

in the Bluetooth stack instance’s configuration structure prior to invoking the packet

processing routine.

void Bluetooth_TickElapsed(BT_StackConfig_t* const StackState);

To manage timeouts, the stack must be updated regularly of the passage of time using

this function. Each time the configured BT_TICK_MS tick period elapses, this function should

be invoked to determine if any timeout conditions must be generated internally.

3.4.2 Events and Callbacks

In response to conditions set within the stack internals, one or more event or callback

functions may be invoked. These functions, implemented by the user application, allow

the system to respond to events in a synchronous manner as they occur within the stack,

and/or indicate to the stack the appropriate action to take when a decision is required.

The user-implemented functions are split into two categories:

1. Event Functions, which allow the user application to respond to events. This

class of function has no return value, and the user application may choose to not

provide a functional implementation for one or more events, if the event condition

is of no interest to the user application.

2. Callback Functions, invoked when the stack reaches a condition where a decision

must be made by the user application—such as whether to accept or reject a

particular incoming connection or channel request—before stack operations can

continue. These functions require a decision to be give as the function’s return

value, which is then used by the stack internally.
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Event and callback invocations are generated by the stack layers as required. Figure 3.7

shows the general message, callback and response sequence path a typical software stack

will follow throughout its normal processing activities.

Figure 3.7: Message, Response and Callback sequence of a typical software stack
when passing a message and response through several intermediate layers.

In the project’s Bluetooth stack, the names of the event and callback functions are

fixed, and cannot be changed. User applications are required to implement all callback

and event functions (identified via their CALLBACK_ and EVENT_ prefixes) using the exact

prototypes given in the module headers. This design was preferred over a traditional

registration system to reduce the stack’s binary size and RAM footprint.

A minimal set of callback and event functions (excluding the physical packet transport

callback) required to link in the SDP and RFCOMM services to the core Bluetooth stack

are shown in Listing 3.6.
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void EVENT_Bluetooth_InitServices(BT_StackConfig_t* const StackState)

{

SDP_Init(StackState);

RFCOMM_Init(StackState);

}

void EVENT_Bluetooth_ManageServices(BT_StackConfig_t* const StackState)

{

SDP_Manage(StackState);

RFCOMM_Manage(StackState);

}

bool CALLBACK_Bluetooth_ConnectionRequest(BT_StackConfig_t* const StackState ,

BT_HCI_Connection_t* const Connection)

{

/* Accept all requests from all devices regardless of BDADDR */

return true;

}

void EVENT_Bluetooth_ConnectionStateChange(BT_StackConfig_t* const StackState ,

BT_HCI_Connection_t* const Connection)

{

/* Ignore state changes to the HCI connections */

}

bool CALLBACK_Bluetooth_ChannelRequest(BT_StackConfig_t* const StackState ,

BT_HCI_Connection_t* const Connection ,

BT_L2CAP_Channel_t* const Channel)

{

/* Accept all channel requests from all devices */

return true;

}

void EVENT_Bluetooth_ChannelStateChange(BT_StackConfig_t* const StackState ,

BT_L2CAP_Channel_t* const Channel)

{

/* Determine the channel event that has occurred */

if (Channel ->State == L2CAP_CHANSTATE_Open)

{

SDP_ChannelOpened(StackState , Channel);

RFCOMM_ChannelOpened(StackState , Channel);

}

else if (Channel ->State == L2CAP_CHANSTATE_Closed)

{

SDP_ChannelClosed(StackState , Channel);

RFCOMM_ChannelClosed(StackState , Channel);

}

}

void EVENT_Bluetooth_DataReceived(BT_StackConfig_t* const StackState ,

BT_L2CAP_Channel_t* const Channel ,

uint16_t Length ,

uint8_t* Data)

{

SDP_ProcessPacket(StackState , Channel , Length , Data);

RFCOMM_ProcessPacket(StackState , Channel , Length , Data);

}

void CALLBACK_RFCOMM_DataReceived(BT_StackConfig_t* const StackState ,

RFCOMM_Channel_t* const Channel ,

uint16_t Length ,

uint8_t* Data)

{

/* Process received RFCOMM data on the virtual serial port here */

}

Listing 3.6: Minimal set of event callbacks for SDP and RFCOMM service use.
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Robot Hardware Implementation

To help demonstrate the usefulness of the stack in a practical manner, a robot was

designed and constructed. This robot, named the ExplorerBot, was then used to give

a practical reference implementation of a full project utilizing the custom embedded

Bluetooth stack in a real-world environment.

4.1 Hardware Overview

The completed robot design for the project contains many useful capabilities for both

mobility and exploration. Built on top of a pre-fabricated (including raw DC motors

and gearing) “Tank” style plastic robot base, the ExplorerBot robot implements the

following features:

• Primary switch-mode based 5V power supply

• Secondary LDO based 3.3V power supply for attached sensors

• 2x16 Alphanumeric LCD Screen for feedback to the user

• Two momentary pushbuttons for user control

• One RGB status LED for basic status feedback

• Dual PWM motor control system, with variable speed and direction of DC motors

• Level converted I2C bus for the attached sensor(s)

• Support for the Atmel Inertial One and Pressure One sensor boards

• High intensity LED based headlights for frontal illumination

26
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• Piezo speaker for audio feedback and “horn” like functionality

• Atmel AT90USB1287 8-Bit Microcontroller

• External 128KB SRAM for temporary storage of packets to and from the Bluetooth

adapter

The complete robot design was created in the Altium Designer software, including both

the schematic design and board routing. Surface mount components were chosen where

possible to reduce the board space required, and two board layers used as this proved to

offer the best cost/benefit ratio. The final board design measured 10cm x 15cm, however

much of this board space is relatively unused; with optimization, this board space could

be reduced considerably.

To get the best results in the construction of the robot, the boards were manufac-

tured commercially. This process ensured the manufactured board’s quality while also

provided solder mask and silk-screen to reduce the potential for error in the robot’s

construction.

4.2 Hardware Modules

In the section, the various hardware components of the constructed robot are detailed

at the block level. Figure 4.1 below illustrates how the various hardware blocks that

comprise the robot connect together to make the final design.

Figure 4.1: Hardware Block Diagram of the completed ExplorerBot robot.

4.2.1 Microprocessor

Due to the author’s familiarity with the Atmel line of AVR branded microcontrollers,

one of the available models in this line-up was chosen to serve in the robot as the
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main processor, the AT90USB1287. This 8-bit microcontroller contains 128KB of non-

volatile FLASH memory for program storage, 4KB of non-volatile EEPROM for user

application parameter storage and 8KB of internal SRAM for scratch memory. A 16MHz

clock (provided by an external crystal) was selected for the design as this offered the

fastest possible speed the chip was capable of, while still allowing the hardware USB host

controller inside the chip to function normally. As a trade-off, this higher clock speed

put a constraint on the main logic level voltage; at 16MHz, the AVR microcontroller

required 5V to be within the datasheet’s specifications [8].

As the AT90USB1287 and associated USB components are difficult to source in single

quantities at reasonable prices, the use of a commercial breakout module containing

this chip was selected instead, the Micropendous-A board (see Figure 4.2). This board

contains the surface mount AVR microcontroller and associated USB components, along

with an external 128KB SRAM chip attached to the AVR’s external memory bus in-

terface [9]. As the Bluetooth stack required a large temporary buffer for incoming data

packet fragments, the selection of this board proved ideal for the implementation of the

robot.

Figure 4.2: The Micropendous-A development board [9].

4.2.2 Primary Power Supply

As the vast majority of the robot’s hardware operated at a fixed 5V level, a power

supply was required to reduce the Lithium Ion battery’s raw 7.2V (nominal) voltage

down to the 5V level needed to power the various components. Due to the use of battery

power in the project, reducing power consumption where possible was a large concern;

thus, a switch-mode design was chosen for maximum voltage conversion efficiency. A

conventional linear regulator was considered for the design, but rejected due to the

prohibitively large amount of power this would waste (approximately .45W, assuming

an average 200mA operating current).

The regulator selected for the project was the LM2595-5.0, a fixed-function switch-mode

regulator capable of outputting a fixed 5V rail at loads of up to 3A [10]. While the robot

design would not consume even a fifth of this power, the overhead in the specifications
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ensured that the power supply would remain robust and the output within the tolerances

of the system components regardless of the load demanded. The exact schematic used

in the final robot power supply design (see Figure 4.3) was taken from the regulator

component’s datasheet to ensure correct operation.

Figure 4.3: Schematic of the robot’s main 5V switch-mode power supply.

4.2.3 User Interface

For interaction with the user, the robot contains several components, detailed below.

4.2.3.1 RGB Status LED

For primary status indication, a surface mount RGB LED indicates the current status

of the robot. Due to a lack of free PWM channels on the AVR microcontroller, the three

LED sub-components are wired directly to standard GPIO ports. While this design

prevented PWM fading of the individual LED subcomponents to produce a many-bit

custom colour from the LED, a three bit colour space is possible giving a total of 8

possible colour states (see Table 4.1). For the purposes of the created robot, this is in

practice more than enough for basic status indication.
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R G B Output Colour

0 0 0 Off

0 0 1 Blue

0 1 1 Cyan

0 1 0 Green

1 1 0 Magenta

1 0 0 Red

1 0 1 Yellow

1 1 1 White

Table 4.1: List of the possible output colours of the RGB LED, from the possible
binary channel inputs.

To achieve a somewhat uniform brightness, the three LEDs were adjusted with cur-

rent limiting resistors to consume an equal amount of current (approx. 5mA) despite

differing forward voltages. As the RGB status LED shares the same I/O pins as the

microcontroller’s JTAG port for programming and debugging, the RGB LED’s common

anode was connected via a removable wire link (see Figure 4.4) to ensure that it could be

taken out-of-circuit if it proved to interfere with the external hardware debugger during

development.

Figure 4.4: Close-up of the removable wire link used to disable the RGB status LED
to prevent conflicts with the JTAG lines during programming/debugging.

4.2.3.2 LCD Display

For situations where more information needs to be communicated to the user than is

possible via the RGB status LED, a 16x2 Alphanumeric LCD display—compatible with

the well known Hitachi HD44780 chipset—was added to the design. Due to the limited

number of GPIO pins available on the microcontroller, the LCD was wired in 4-bit mode,

with the lower 4 data pins on the LCD being wired directly to ground (see Figure 4.5).
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While this doubled the time required to send a byte to the LCD (as bytes then need

to be split into a pair of 4-bit nibbles) the high speed of the processor meant that in

practice this had little or no effect to the overall speed of the system.

The LCD backlight was wired through a driver transistor to a spare PWM channel on

the AVR microcontroller, allowing for 8-bit PWM brightness control to reduce power

consumption of the backlight when not in use. As the LCD display’s LED backlight had

a nominal forward voltage of around 3V, a 10Ω resistor was used to limit the maximum

drive current to around 200mA.

Figure 4.5: Schematic of the LCD connections, showing the 4-bit LCD data bus mode
and backlight driver transistor.

4.2.3.3 Buttons

A pair of standard PCB round buttons were added to the design, for user input. These

buttons were wired directly to the microcontroller’s GPIO pins; internal pull-up resistors

in the microcontroller takes care of maintaining a defined logic level on the pins when

the buttons are released, while software handles the debouncing of the button signals.

4.2.4 Headlights

To provide illumination of the area immediately ahead of the robot, a pair of high

intensity wide viewing angle white LEDs were added to the schematic, connected to

a single common driver transistor and driven by a GPIO pin of the microcontroller.

To ensure maximum illumination, the LEDs were driven at just under their full 20mA



Chapter 4. Robot Hardware Implementation 32

rating when turned on. These “headlights” were then mounted on the front of the robot

chassis.

4.2.5 Speaker

A small PCB Piezo speaker was added to the robot, in order to provide both audio

feedback for important events (such as Bluetooth connections and disconnections) as

well as to act as a miniature horn to attract the attention of any organic obstacles to

encourage them to move away from the robot’s line of motion. Rather than mounting the

speaker directly onto the PCB, it was determined that a better location was in between

the two frontal headlight LEDs, with the speaker then connected back to the PCB via

flyleads. This arrangement made the directional speaker point in the orientation most

suited to a car horn, i.e. towards the front of the robot (see Figure 4.6).

Figure 4.6: Schematic of the robot’s piezo speaker (left) and photo showing the
mounting in the robot prototype (right).

To drive the speaker, a standard NPN transistor was employed to provide sufficient

current, driven from an 8-bit PWM timer output GPIO pin of the AVR microcontroller.

4.2.6 Motor Controller

While the plastic hobbyist “tank” style robot base selected for the prototype robot con-

tained a pair of 6V DC motors stock from the factory, it did not contain a motor control

system; implementation of a suitable motor control circuit was thus required as part of

the project. To prevent motor noise from being injected back into the main 5V power

supply used by the sensitive microcontroller, the motors were instead powered directly

from the raw battery voltage. By directly powering the motors from the system battery,

the main 5V logic power bus could remain relatively undisturbed by the potentially large

current spikes caused by the switching on and off of the motors under load. This design
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had the additional benefit of a reduced total power draw on the main power supply,

reducing wasted power due to the supply’s non-perfect efficiency and prolonging the

operating time of the robot on a fresh battery.

As the raw battery voltage (7.2V nominal) was higher than the motor’s 6V maximum,

a PWM circuit was thus designed so that the average power delivered to each motor

would prevent the motor from burning out during use. While not used in the final robot

firmware, the use of variable duty cycle PWM drive signals to the motor would allow for

additional speed control of the robot’s motors without a corresponding loss of torque.

The motor controller design used in the project centered around the well-known con-

ventional L298N Dual Channel Full H-Bridge Driver IC, notable for its high current

drive capabilities and low-voltage logic level drive input support (see Figure 4.7) [11].

Originally the L298D variant was selected due to its convenient internal flyback diodes,

however at the time of parts ordering a cheap source for the part could not be found.

Unfortunately, the original PCB design did not allow for the possibility of adding exter-

nal flyback diodes, resulting in the need for a second revised PCB manufacturing run to

add in space for the missing components (see Figure 4.8). Due to space constraints, the

L298N’s current sensing capabilities for motor stall detection were not used.

Figure 4.7: Schematic of the L298N H-Bridge circuit used.

To correctly drive the L298N’s PWM inputs, it was necessary to construct a logically

inverted version of the PWM signal from the main microprocessor, which would be fed

into the L298’s channel compliment pin in order to correctly switch on and off the correct

portions of the internal H-Bridge circuit. As the chosen microcontroller did not contain

enough free pins for this function, a pair of external inverters were constructed out of

discrete parts (see Figure 4.9). This basic logic inverter was used to invert each of the

two motor PWM signals for the H-Bridge IC.
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Figure 4.8: Partial schematic (left) and photo (right) of the external flyback diodes
added in the second PCB revision to the robot’s motors.

Figure 4.9: Schematic of one of the transistor inverters used to generate the compli-
ment of the PWM signal used by the motor H-Bridge.

4.2.7 Sensors

To provide a measure of feedback from the robot, a number of sensors were added to

the design. These sensors, when attached, would allow for the robot’s environment to

be logged and (potentially) reacted to.

4.2.7.1 Sensor Power Supply

While the main system logic and user interface components run from the main switch-

mode 5V power supply, the sensor boards were required to run at a fixed 3.3V level,

without the possibility of conversion to suit the higher rail voltage.



Chapter 4. Robot Hardware Implementation 35

For this reason, and to reduce the amount of noise on the sensor power supply for

maximum precision, a decision was made to add a secondary power supply, running

from the 5V rail, to step down the voltage to the 3.3V required by the sensor boards.

For best results, an ADP3308 Low Dropout (LDO) style regular was used (see Figure

4.10) as this provided both low output rail noise and minimal wasted power [12].

Figure 4.10: Schematic of the sensor 3.3V LDO power supply.

4.2.7.2 Level Converters

Due to the differing bus voltages between the sensor boards (3.3V) and the main proces-

sor (5V), level conversion of the I2C bus and sensor interrupt/control lines was required.

While only a unidirectional buffer was strictly needed for each of the sensor interrupt/-

control lines, it was decided to use a bidirectional converter to ease the board routing.

Initially, only an ADG3308 8-channel Bidirectional Level Converter IC was used, for both

the sensor interrupt/control lines, as well as the I2C bus. However, after further analysis

it was discovered that the level translator would not meet the timing requirements of

the I2C bus [13], necessitating the addition of a secondary dedicated Texas Instruments

PCA9306 fixed function I2C bus level converter IC in the second revision of the board.

As a bonus, the use of the later chip allowed the I2C bus to be driven at the “Fast” I2C

speed of 200KHz for minimal latency and maximum throughput.

Unusually, the ADG3308 level converter IC required that its enable pin (located on the

low voltage side of the translator) be connected to the higher logic level for the chip

to become active (see Figure 4.11). This odd placement of the enable pin resulted in

a non-optimal breaking of the ground plane underneath the chip to accommodate the

required route, as the space between the chip package pins on the top layer was used to

carry the 3.3V power bus to the sensor boards (see Figure 4.12).
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Figure 4.11: Schematic of the ADG3308, showing the unusual placement of the VCC-
Y level active high enable pin.

Figure 4.12: Routing of the ADG3308, showing the 3.3V bus (red) and 5V enable
(blue) routes.

The board routing complexity was reduced slightly by swapping the functions of the

PCA9306 bus level translator’s SDA and SCL pins (see Figure 4.13) on both sides of the

IC; this modification (allowable as indicated in the device’s datasheet [14]) prevented

the need to introduce additional board vias and longer trace routes.

Figure 4.13: Schematic of the PCA9306, showing the swapped SDA and SCL pin
functions.
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4.2.7.3 Atmel Sensor Boards

By designing the robot around a pair of commercially available Atmel sensor boards for

environmental feedback, the design of the robot was considerably simplified and the total

unit cost lowered. The Atmel Pressure One board contains a Bosch BMP085 Pressure

Sensor IC for air pressure sensing [15], while the Atmel Inertial One contains a 3-Axis

ITG3200 Gyroscope, 3-Axis BMA150 Accelerometer and 3-Axis AK8975 Compass IC

(see Figure 4.14) [16]. As several of the sensors also contain a digital temperature

sensor in addition to the primary sensor (for calibration and stability feedback) this

functionality was also used by the robot to measure the environmental temperature in

real time.

Each sensor IC is driven by the main microcontroller of the robot over the level converted

I2C bus and one or more digital interrupt/control lines. The Atmel sensor board modules

all use an identical form factor, with one standard .1” 2x5 female header located at one

end of the board reserved for the mounted sensor’s digital I/O pins, and another located

at the opposite end of the board reserved for analogue sensor pinouts. As none of

the sensor boards used contained analogue sensor outputs, the second female header

consisted only of non-connected pins, and a matching male header was placed on the

board for mechanical stability only.

Figure 4.14: The Atmel Inertial One (left) and Pressure One (right) Sensor Boards
[15] [16].
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4.3 Final PCB Design

The final revision of the robot PCB is shown in Figure 4.15. The layout of the various

hardware sections on the PCB was kept as modular as possible, and confined to the top

layer where practical to ensure a good ground plane on the bottom PCB layer.

Figure 4.15: Photos of the final revision PCB top side (left) and bottom side (right)
used in the robot prototype.

The PCB artwork is shown in Figure 4.16. Note that the ground layer fill has been

removed from the bottom layer for clarity.
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Figure 4.16: Artwork of the final revision PCB, showing both the top (black) and
bottom (gray) layers.
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Robot Firmware Implementation

With the creation of the software embedded Bluetooth stack and the ExplorerBot test

robot platform hardware, it was necessary to integrate these two components into a

functional prototype. By using the Bluetooth stack in a real-world, practical application

while it was being developed, the quality, effectiveness and completeness of the stack

could be evaluated.

5.1 Firmware Overview

The completed firmware of the ExplorerBot prototype was developed in a modular man-

ner, to match the corresponding hardware components. This top-down methodology

ensured that each portion of the firmware could be mocked up, tested and integrated as

needed. Additionally, separating out the firmware components into logical modules gave

the final firmware a level of flexibility which should allow for easy modification to suit

any hardware changes made to those of the prototype. The completed set of modules

shown in Figure 5.1 served as the complete firmware for the robot.

40
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Figure 5.1: Block Diagram of the completed ExplorerBot robot firmware.

5.2 Firmware Modules

In this section, each of the robot firmware’s main software modules are listed and de-

scribed in additional detail so that the overall design and implementation of the firmware

can be further understood.

5.2.1 Main System Control and Configuration

The main entry point and system loop of the firmware was contained into a single top

level module. This module was then made responsible for the initial system hardware

configuration, as well as the management of the main loop to dispatch the service task

functions in each sub-module.
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5.2.1.1 System Initialization

A series of initialization steps are followed during the hardware configuration step; first,

the system watchdog (enabled if the chip was last reset through the expiry of the watch-

dog peripheral’s timer) is disabled, the system CPU clock prescaler disabled to ensure

the full 16MHz CPU clock speed is used, unused peripherals are powered down and the

JTAG debug interface turned off so that the GPIO pins could be used for the RGB

status LED. This latter procedure removes the ability to debug the firmware with an

external JTAG debugger, however during development it was commented out.

Next, the setup routine calls each hardware driver module’s Init() function, which serves

to initialize each hardware module and configure the appropriate hardware ready for use.

Finally, one of the robot’s remaining 16-bit hardware timers is then configured to run

at a 10ms period to serve as the master system tick for timeout management and time

based events.

5.2.1.2 Start-up Tasks

Once all the system hardware is initialized, the main program flow then executes the

start-up tasks; an informational message is displayed to the LCD while the RGB status

LED sequences through all possible combinations, and the sensor platform is initialized

to determine which sensors are currently connected. The state of each sensor is then

displayed briefly onto the LCD using custom LCD character definitions before the main

loop starts (see Figure 5.2).

Figure 5.2: LCD showing successful (left) and failed (right) initialization of the robot’s
sensors.

5.2.1.3 Main Program Loop

As is the case with virtually all embedded systems, the main program execution was

contained in an infinite loop; each iteration of the loop would dispatch to the various
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sub-components of the system to manage the system state and react to various stimuli.

In the case of the robot firmware, the main loop contained three main functions; one,

it checked for presses of either of the two physical buttons on the robot, two, it would

check for expiry of the system tick timer to dispatch timing-related events, and three, it

would execute the various hardware and software module service tasks.

In the case of the two physical buttons, the first (top) button was assigned a soft-reset

role, in the case of a communication failure which resulted in the robot’s motors be-

ing left on and the system uncontrollable. This emergency stop style functionality was

implemented using the microcontroller’s internal watchdog system to reset the micro-

controller approximately 15ms after the button press was detected. The second physical

button was assigned a mode-specific role, according to Table 5.1.

Mode Function

Bluetooth Mode Initiates a connection to stored Bluetooth device address

HID Mode Unused

Mass Storage Mode Enables sensor logging to the attached flash drive

Table 5.1: Table showing the function of the mode-specific physical pushbutton.

Each time the main loop detected that the system update tick timer period had elapsed,

it would notify all timing-dependant hardware modules of this fact; for example, the

LCD driver relies on these updates to automatically fade the LCD backlight brightness

after a given period of inactivity. Also performed in this section is the update of the

sensor values via the sensor platform at regular intervals, and the logging of this data

either to the attached Mass Storage USB disk (if logging is enabled) or an established

virtual serial connection to a remote PC via Bluetooth.

5.2.2 Hardware Drivers

At the point at which the abstract software in the device needed to interact with the

physical board hardware, a set of hardware abstraction drivers was created. These

drivers served to encapsulate the functionality of the physical hardware and expose that

functionality to the rest of the firmware via a set of basic control API functions. Not

every driver sought to expose all the possible abilities of the hardware; due to time

constraints only those features actually required by the prototype robot firmware were

implemented in most cases.
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5.2.2.1 Buttons Driver

The hardware for the board button driver was, as expected, very simple; no debounc-

ing was implemented in the driver itself, as this was not found to be necessary in the

firmware. Adequate debouncing for the button logic could be achieved elsewhere in the

code instead, via the software flags the buttons controlled.

As a result, the completed button driver implementation was trivial, consisting only

of a configuration routine to configure the appropriate GPIO lines as inputs with the

microcontroller’s internal pull-up resistors enabled, and a status routine to read and

mask out the appropriate port lines.

5.2.2.2 External SRAM Driver

While the selected AT90USB1287 microcontroller contains 8KB of SRAM internally for

stack, global variables and other working-set data [8], an external 128KB SRAM IC

was mounted externally on the microcontroller board. This memory was attached to

the AVR’s external memory interface bus, and could then be used to extend the SRAM

memory space at the cost of an extra CPU cycle for each external bus access.

Unfortunately, while this external SRAM memory uses a 17-bit address, the AVR’s

external memory bus interface is only 16-bits wide. As a result, a small software shim

driver was required to perform manual bank swapping when required to select one of the

two halves of memory. This total 128KB of external SRAM memory was thus divided

into two 64KB memory banks, only one of which could be selected at one time.

5.2.2.3 Headlights Driver

Like the button driver, the headlight driver contained only a thin wrapper around the

GPIO pin used to control the robot’s headlights. Latching of the headlight state was

achieved through the GPIO hardware itself; once set to a particular state, the headlights

would remain in that state (illuminated or disabled) until changed by a subsequent call

to the module’s update routine.

5.2.2.4 LCD Driver

The LCD chosen for the robot contained a chipset compatible with the HD44780 display

controller, common to many embedded systems where complex graphics are not required.

As a result, there is already a plethora of LCD drivers available on the internet from
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hobbyists and from most microcontroller silicon vendors. Despite this, a simple custom

LCD driver was written from scratch for the project, to ensure that as much of the

project as was practical remained under the sole author’s copyright and distribution

control.

While the robot hardware contained a direct hardware connection to the LCD display’s

R/W pin (for read/write control) the final driver code used a more basic hard-coded

busy-wait delay method to ensure the display’s timing was met. This practice proved

to be the easiest to implement however for better performance this would have to be

re-written as a polling scheme of the LCD controller’s logical busy flag to reduce the

system latency.

To conserve battery life, the LCD driver implemented an optional auto-dimming fea-

ture for the LCD backlight; when enabled, the display backlight would remain at full

brightness after any updates for several seconds, before being faded gradually down to

half brightness. This feature ensured that the display remained visible even in low-light

conditions, but the reduction in brightness conserved battery power from the relatively

power hungry backlight.

5.2.2.5 Motor Driver

To drive the external H-Bridge circuit used in the robot’s motor controller hardware, a

software module had to be written to correctly generate the required direction and pulse

train signals. A single 16-bit hardware timer was used for this purpose, with its dual

PWM outputs connected to the motor control circuit hardware.

The function to control the motor output was significantly more complex than antici-

pated, due to the slow switching characteristics of the H-Bridge and inverter hardware

chosen (see Chapter 7). The resulting driver had to ensure that during a direction change

of one or more motors, the PWM signal of the motor would be completely disabled, to

prevent momentary shorts of the main battery during the switching period.

Through trial and error, the motor PWM timer period was set to 0x0FFF, giving a fre-

quency of around 1.9KHz at 16MHz due to the disabled prescaler and chosen “Phase

Correct” timer mode. Values below this range moved the PWM frequency harmonics to

an irritating portion the human range of hearing, while raising this frequency reduced

the efficiency of the motors and reduced the motor drive torque.
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5.2.2.6 RGB LED Driver

Like the robot headlights driver, the RGB status LED driver contained very little com-

plexity. As a convenience, this driver exposed two sets of enum values which could be used

to set the colour of the RGB LED on the board. The first enum contained the literal

colour names, which could be used to set a particular colour, while the second enum

contained logical aliases of these colours for the various system states (see Listing 5.1).

enum RGB_Colour_t

{

RGB_COLOUR_Off = 0,

RGB_COLOUR_Red = (1 << 4),

RGB_COLOUR_Green = (1 << 5),

RGB_COLOUR_Blue = (1 << 6),

RGB_COLOUR_Yellow = (RGB_COLOUR_Red | RGB_COLOUR_Green),

RGB_COLOUR_Cyan = (RGB_COLOUR_Blue | RGB_COLOUR_Green),

RGB_COLOUR_Magenta = (RGB_COLOUR_Red | RGB_COLOUR_Blue),

RGB_COLOUR_White = (RGB_COLOUR_Red | RGB_COLOUR_Green | RGB_COLOUR_Blue),

};

enum RGB_Colour_Aliases_t

{

RGB_ALIAS_Disconnected = RGB_COLOUR_White ,

RGB_ALIAS_Enumerating = RGB_COLOUR_Yellow ,

RGB_ALIAS_Error = RGB_COLOUR_Red ,

RGB_ALIAS_Ready = RGB_COLOUR_Green ,

RGB_ALIAS_Connected = RGB_COLOUR_Blue ,

RGB_ALIAS_Busy = RGB_COLOUR_Magenta ,

};

Listing 5.1: RGB LED driver’s colour enumeration aliases.

Either of these two enum’s values could be passed into the RGB LED driver’s update

routine, however in most cases the second (logical alias) versions were used to allow for

easy modifications to the status colours at a later stage if desired.

5.2.2.7 Speaker Driver

To drive the robot’s small piezo speaker, an 8-bit hardware timer on the AVR microcon-

troller was used to generate an appropriate PWM square-wave of variable frequency to

control the speaker driver transistor. Calling functions may supply either a raw timer

count value to set the PWM frequency, or they may use the SPEAKER_HZ() macro exposed

by the module to convert a desired frequency into the closest timer count value.

A secondary feature of the speaker driver is the ability to play back one of several

predefined sequences of notes, which are embedded into the firmware. These sequences

are then used to play audible status indications on request from an external module.

Note sequences are encoded as arrays of 16-bit unsigned values; the upper byte of which

contains the PWM timer value to load into the timer, and the lower byte contains the
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number of system ticks the note should play for. As a convenience, the module-internal

SPEAKER_NOTE() macro performs the required encoding from a given note frequency and

duration in milliseconds. A 0x0000 zero entry terminates each note sequence.

5.2.3 Sensor Platform

As the robot contained an (optional) set of physical environment sensors, a “Sensor

Platform” module was created to logically encapsulate all aspects of the sensors—from

initialization and updates, to data formatting of the retrieved values—into a single

package that could be integrated into the rest of the project easily, but also remain

extendable enough that it could also be re-used in other future projects. The sensor

platform is comprised of two software layers; the abstract sensor management layer, and

the physical sensor drivers.

5.2.3.1 Abstract Sensor Management

While the robot’s auxiliary sensor boards (the Atmel Inertial One and Pressure One)

contained several different sensor ICs with very different characteristics, the Sensor Plat-

form module was designed to abstract these differences out from the rest of the firmware.

This abstraction was achieved by providing a pair of simple initialization and update

functions, and a consistent structure for the retrieved data from each sensor. An addi-

tional pair of functions were written to convert the retrieved sensor values into a Comma

Separated Values (CSV) format. Using this method of encoding the data ensured that

the retrieved data could be streamed out to one or more logical consumers in a standard-

ized manner. Missing sensors (either not mounted or faulty) are automatically ignored

by the sensor platform once the call to their initialization function has failed to complete.

Unfortunately, this abstraction led to one notable problem; as each sensor has a variety

of configuration parameters which are specific to that particular device (or physical

property it measures) an abstract interface for sensor configuration could not easily be

written. While this could be solved with additional design and planning, for the purposes

of the project each sensor’s configuration was instead fixed to sane defaults inside the

physical sensor drivers, and no interface provided to alter these parameters on the fly

externally.

The C language structure used to encapsulate the state of a single sensor is shown

in Listing 5.2. This structure definition is instantiated as an array inside the sensor

platform, with one entry then being dedicated to each physical property being measured

(as distinct from each physical sensor IC). In the case of the ITG3200 Gyroscope sensor
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IC, the internal temperature sensor was used in addition to the orientation data. In this

particular case, the temperature sensor was assigned a second sensor structure entry in

the sensor structure array.

typedef struct

{

/* Indicates if the current sensor is connected or not. */

bool Connected;

/* Human -readable name of the sensor , stored in SRAM. */

const char* Name;

/* Indicates if the sensor data is represented as a single value , or a

triplicate of three axis values. */

bool SingleAxis;

/* Last retrieved data from the sensor. */

union

{

/* Sensor data if the sensor outputs a single axis value. */

int32_t Single;

/* Sensor data if the sensor outputs three axis values. */

struct

{

/* X axis value of the triplicate . */

int16_t X;

/* Y axis value of the triplicate . */

int16_t Y;

/* Z axis value of the triplicate . */

int16_t Z;

} Triplicate;

} Data;

} SensorData_t;

Listing 5.2: Sensor Platform’s abstract sensor entry structure definition.

Of note is the use of a C union to contain the retrieved sensor data, as either a single

int32_t signed 32-bit integer value, or a triplicate of three int16_t signed 16-bit integers.

The use of this union minimises the amount of memory used by each sensor entry, as the

two mutually exclusive styles of returned data can overlap physically in RAM (see Figure

5.3). For sensors returning only a single 32-bit value, the sensor initialization function

sets the corresponding SingleAxis item in the structure so that the platform knows how

to extract and format the retrieved data.

5.2.3.2 Individual Sensor Drivers

Each individual sensor connected to the board requires a custom sensor driver, specific to

that make and model of sensor IC. Unique to each sensor is the sequence required to set

up the sensor to a known set of default configuration parameters (see Table 5.2), as well

as the exact command set, address of the I2C bus, and optional use of control/interrupt

GPIO lines used in the sensor’s operation.
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Figure 5.3: Layout of the Sensor Platform Entry structure in memory for triple axis
(top) and single axis (bottom) sensors.

Sensor Type Address Settings

AK8975 Direction 0x0C Power-on default settings

BMA150 Acceleration 0x38 25Hz bandwidth,
+/-2g range,
Interrupt line enabled

BMP085 Pressure 0x77 Power-on default settings

ITG3200 Orientation 0x68 100Hz at a 1KHz internal sampling rate,
Low Pass Filter to use 20Hz bandwidth,
Gyroscope X axis PLL as the clock source,
Interrupt line enabled

ITG3200 Temperature 0x68 N/A (Virtual Sensor)

Table 5.2: Table showing the sensors used and their configuration properties.

To ensure the interface into each individual sensor driver was as uniform as possible,

the exact implementation details was hidden from external modules, with each driver

exposing just two functions; an Init() function to initialize the sensor, and an Update

() function to pull the latest values from the sensor if it has completed a conversion.

To prevent slow sensors from introducing unnecessary lag into the system, the update

functions would abort if the next conversion was not ready at the point in time that the

function was called, and the sensor entry structure would retain the previously retrieved

sensor value. Each time a completed sensor data conversion was read from the sensor,

a new conversion was started asynchronously.
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5.2.4 Third Party Modules

While every effort was made to ensure that as much code as possible for the project

was written from scratch, some allowances had to be made for third party libraries.

Such libraries were used in places where the complexity of the module would hinder

the project if a new implementation had to be implemented from scratch within the

project’s time frame.

5.2.4.1 LUFA

A crucial part of the project was the ability to communicate with USB devices; the

AVR’s USB interface was to be used for both configuration and control of the robot,

via a variety of USB devices. A full USB stack is a rather complicated affair; generally

it takes an entire team of programmers working together and ample debugging time to

produce a functional stack. Because of the short time frame of the project, an existing

stack was chosen instead.

The selected stack was LUFA [17], the Lightweight USB Framework for AVR devices.

This stack, a personal side-project of the author, offers a rich device support in both

USB host and device modes. The library contains many inbuilt drivers for the various

classes of USB devices, some of which were used in the project for the HID joystick

control and Mass Storage configuration and sensor logging.

For the robot firmware, LUFA version 20111009 was used.

5.2.4.2 FatFS

To read and write files onto an attached Mass Storage USB device, it was necessary

to add a filesystem driver into the system. Using a standard filesystem allowed the

firmware to maintain compatibility with files stored onto the disk using other devices.

As the de-facto standard for embedded system filesystem is Microsoft’s FAT (due to

its relative simplicity when compared to more modern filesystems) a FAT compatible

filesystem driver was selected for the project.

The third-party FATFs library [18] was chosen for this task, as it offers a free, tested,

portable and light-weight C implementation of the FAT filesystem standard. The FATFs

library is compatible with most variants of the FAT standard (including FAT16 and

FAT32) making it an ideal choice for the project. Linking the FATFs library’s read and

write callback functions to the LUFA USB library’s Mass Storage class driver section

functions proved to be much easier than anticipated (see Listing 5.3).
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DRESULT disk_read(BYTE drv , BYTE *buff , DWORD sector , BYTE count)

{

uint8_t ErrorCode = RES_OK;

if (USB_HostState != HOST_STATE_Configured)

{

ErrorCode = RES_NOTRDY;

}

else if (MS_Host_ReadDeviceBlocks (& Disk_MS_Interface , 0,

sector , count , 512, buff))

{

MS_Host_ResetMSInterface (& Disk_MS_Interface);

ErrorCode = RES_ERROR;

}

return ErrorCode;

}

DRESULT disk_write(BYTE drv , BYTE *buff , DWORD sector , BYTE count)

{

uint8_t ErrorCode = RES_OK;

if (USB_HostState != HOST_STATE_Configured)

{

ErrorCode = RES_NOTRDY;

}

else if (MS_Host_WriteDeviceBlocks (& Disk_MS_Interface , 0,

sector , count , 512, buff))

{

MS_Host_ResetMSInterface (& Disk_MS_Interface);

ErrorCode = RES_ERROR;

}

return ErrorCode;

}

Listing 5.3: FATFs code to connect the library to the LUFA Mass Storage class driver.

5.2.5 USB Management

In order to support the various types of USB devices needed by the robot firmware, a

collection of USB class-specific management layers were written. These layers, sitting in

parallel on top of the LUFA USB stack, provide the routines necessary to manage each

type of supported USB device.

While the LUFA USB stack provides support for several of these classes of USB devices

internally, additional code was required to wrap the existing USB class driver, to extend

the provided functionality and interface the driver with the rest of the system.

5.2.5.1 Bluetooth Adapters

The LUFA stack version used in the project did not contain a ready-made internal

driver for USB Bluetooth adapters. A suitable driver was thus created specifically for

the project using the USB transport specification outlined in the Bluetooth 2.1 speci-

fication document. In order to support all possible Bluetooth adapters from all silicon
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vendors, the driver was written to match generically on the defined class, subclass

and protocol Device Descriptor values of 0xE0, 0x01 and 0x01 respectively, as set by

the Bluetooth specification for conformant Bluetooth adapters [4]. By matching against

these values instead of a particular Vendor ID and Product ID, the driver was able

to support all devices conforming to the Bluetooth standard’s USB transport interface

specification without additional modifications being required.

During the enumeration process of an inserted USB device, the main function calls the

module’s BluetoothAdapter_ConfigurePipes() function to attempt to bind it to the inserted

USB device. The module first validates the device descriptor to ensure the inserted

device is reportedly a Bluetooth adapter. Next, the pipe configuration routine attempts

to configure the USB controller’s logical data pipes so that the Data In, Data Out and

Event In pipes are correctly connected to their matching logical endpoints within the

adapter. If the driver is unable to bind to the device for any reason, the enumeration

process is aborted for the Bluetooth transport driver.

Periodically, the main firmware loop will call the Bluetooth transport driver’s

BluetoothAdapter_USBTask() service task if the transport driver is currently active. This

service task is responsible for checking the logical data pipes for new data, and (if data

is available) reading in the data packet before dispatching it to the Bluetooth stack.

A CALLBACK_Bluetooth_SendPacket() callback function from the Bluetooth stack takes care of

sending packets generated from the Bluetooth stack to the Bluetooth adapter.

5.2.5.2 HID Devices

For local diagnostics of the system before the Bluetooth stack was completed, a local

Human Interface Device (HID) driver was implemented into the firmware. This driver

builds on top of the HID class driver included in the LUFA distribution used, and binds

supported HID devices (such as game controllers) to the robot’s physical functions.

Using this driver, a USB joystick or game controller can be inserted into the robot and

used to control the motors, headlights and horn.

As most HID devices carry a unique physical and logical report layout, it is important

to include a mechanism to correctly bind the appropriate buttons on the attached device

to the correct logical function. Two seemingly identical USB joysticks can output very

different report data structures to the host, requiring the use of a HID Descriptor Report

Parser to correctly parse the reports into a standard format. The HID Report Parser

included in the LUFA USB stack was used for this purpose, and linked into the rest

of the system. This allows the robot to maintain compatibility with virtually all HID

devices containing an appropriate number of buttons.
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5.2.5.3 Mass Storage Devices

As a means of system configuration and monitoring, a Mass Storage Device (MSD)

driver was also added into the device firmware. This proved useful for both fault-finding

and data logging, as data produced by the firmware could be stored onto an inserted

USB flash drive. During the initial firmware development, this functionality was used to

store logs of the on-board sensor outputs, to ensure the correctness of the sensor platform

before the completion of the wireless serial port functionality. At a later stage, this mode

was extended so that it could be used to configure the target remote Bluetooth Device

Address used in the robot’s Bluetooth Mode when a remote connection was initiated by

the user.

To be able to read and write files on an attached USB flash disk drive, the FATFs

library was linked to the LUFA Mass Storage class driver. This abstracted out the

physical medium, giving a higher level file-centric view of the attached storage medium,

as opposed to the direct physical sectors.

When a disk is inserted, the firmware will first attempt to open an existing file called

SENSLOG.CSV on the disk, for sensor logging in CSV format (see Listing 5.4). If such a

file does not exist, a new one is created and the sensor log header (constructed by the

Sensor Platform module) is written to the start of the new file.

Additionally, the firmware will attempt to open and process a second file on the at-

tached storage disk named REMADDR.TXT, which holds the Bluetooth device address of

the remote Bluetooth device the robot should attempt a connection to upon demand.

This file is expected to contain an address of the format XX:XX:XX:XX:XX:XX, containing

the six consecutive octets of the remote device’s address, in hexadecimal format. This

address is then stored into the robot’s non-volatile EEPROM memory for later use when

a Bluetooth adapter is subsequently inserted. If no such file exists on the attached disk,

one is created and the currently stored remote device address written to it.

5.2.6 Bluetooth Management Layer

Connecting the project’s Bluetooth Stack to the rest of the robot firmware was the

Bluetooth Management layer, responsible for providing the appropriate callback func-

tion implementations required by the stack. These callback functions are fired by the

Bluetooth stack in response to defined events, such as connection requests, channel

establishment and packet reception.

A secondary duty performed by the management software layer is the dispatch of events

and data to and from the various Bluetooth services. These services, such as RFCOMM,
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static bool MassStorage_OpenSensorLogFile(void)

{

uint8_t ErrorCode;

/* Create a new sensor log file on the disk , fail if one already exists */

ErrorCode = f_open (& MassStorage_DiskLogFile , DATALOG_FILENAME ,

(FA_CREATE_NEW | FA_WRITE));

/* See if the existing log was created sucessfully */

if (ErrorCode == FR_OK)

{

/* Construct the sensor CSV header line(s) */

char LineBuffer [200];

uint8_t LineLength = Sensors_WriteSensorCSVHeader(LineBuffer);

/* Write constructed CSV header to the attached mass storage disk */

uint16_t BytesWritten = 0;

f_write (& MassStorage_DiskLogFile , LineBuffer , LineLength , &BytesWritten);

}

else if (ErrorCode == FR_EXIST)

{

/* Open the already existing file on the disk */

f_open (& MassStorage_DiskLogFile , DATALOG_FILENAME ,

(FA_OPEN_EXISTING | FA_WRITE));

/* Seek to the end of the existing log file */

f_lseek (& MassStorage_DiskLogFile , MassStorage_DiskLogFile.fsize);

}

else

{

/* Return disk error */

return false;

}

return true;

}

Listing 5.4: Mass Storage manager code to open and write to a file on an attached
USB flash disk using the FATFs library.

SDP and HID, are optional in all implementations, and thus require manual integration

into each project on top of the base Bluetooth stack if desired. These services must be

linked to the various Bluetooth stack callback events so that they may function correctly

(see Listing 5.5).

In some cases, a Bluetooth enabled application may perform specific filtering on incoming

connection and channel requests; an embedded device may be programmed to reject all

but one specific remote device, or only accept specific channel protocols. However, as

the ExplorerBot was designed to be controlled publically via any supported Bluetooth

enabled device, no such filtering was performed in the request callback routines. All HCI

connection and L2CAP channel event callbacks were implemented, however, to display

their relevant event data onto the robot’s LCD display for debugging purposes.

Inside this management layer, the RFCOMM service channel open and close events

were hooked, so that the opened RFCOMM channel handles could be captured. This

captured handle is then stored temporarily by the robot firmware and used for later
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void EVENT_Bluetooth_DataReceived(BT_StackConfig_t* const StackState ,

BT_L2CAP_Channel_t* const Channel ,

uint16_t Length ,

uint8_t* Data)

{

/* Dispatch packets with a known protocol to the integrated services - for

unknown packets , display a message to the LCD */

switch (Channel ->PSM)

{

case CHANNEL_PSM_SDP:

case CHANNEL_PSM_HIDCTL:

case CHANNEL_PSM_HIDINT:

case CHANNEL_PSM_RFCOMM:

SDP_ProcessPacket(StackState , Channel , Length , Data);

HID_ProcessPacket(StackState , Channel , Length , Data);

RFCOMM_ProcessPacket(StackState , Channel , Length , Data);

break;

default:

LCD_WriteFormattedString_P(PSTR("\fL2CAP Recv :%04X\n"

"PSM :%04X C:%04X"),

Length , Channel ->PSM , Channel ->LocalNumber);

break;

}

}

Listing 5.5: Bluetooth Stack event callback example, dispatching received packets to
the integrated Bluetooth services.

streaming of the sensor data. As only one connection handle is stored by the device at

any one time for this purpose, a limitation of the system is imposed; only one wireless

serial port can receive sensor data at the one time.

The HID service callback for packet reception was also hooked in this layer, and im-

plemented to process incoming HID reports from Bluetooth devices. These processed

reports—from game controllers, mobile phones, or other HID compliant devices—were

then fed back into the main firmware module to control the robot’s motors, headlights

and horn hardware.
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Project Results

In this section, the results obtained and testing procedures used in the verification of

the robot are detailed.

6.1 System Testing

An important part of any project is an appropriate level of testing, performed at both

the hardware and software levels. Without adequate testing, undiagnosed latent issues

such as hardware faults and software bugs may cause incorrect system operation. By

performing at least some level of system testing, issues can be found and corrected as

early as possible within the project’s development process.

6.1.1 Board Level Testing

During and after the construction phase of the robot’s hardware, a number of verifi-

cation tests were made to ensure that the various hardware modules were operating

as expected. This step was critical in ensuring the correctness of the hardware before

the main firmware was written, to rule out hardware errors in the software verification

phase.

6.1.1.1 Main Power Supply

The main power supply was tested with an oscilloscope, after the module components

were installed onto the PCB. A static load of 300mA was placed on the switchmode

supply output, and the voltage ripple on the supply measured with an oscilloscope

56
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(see Figure 6.1). This yielded an output ripple of approximately 80mV, well within

the tolerances of the system. At the given static load, the regulated output voltage

was measured at 4.98V, within the specifications of 4.8V ≤ Vout ≤ 5.2V listed in the

LM2595-5 regulator datasheet [10].

Figure 6.1: Oscilloscope trace of the main 5V switchmode power supply showing
ripple under static load.

6.1.1.2 Sensor Power Supply

For the secondary 3.3V LDO power supply used by the board’s sensor modules, an

identical set of tests to those used in the verification of the main power supply were

performed, using the sensor boards as the regulator output load. This yielded a ripple

of 120mV, and an output voltage of 3.27V (see Figure 6.2). When compared to the

ADP3308 datasheet [12] output’s electrical characteristics, this was within the stated

±1.2% accuracy (3.26V ≤ Vout ≤ 3.34V ).

6.1.1.3 Motor PWM Outputs

To test the motor outputs (and, in turn, the entire motor controller circuit) the two motor

output channels were connected to an oscilloscope in sequence, and a small test wrapper

written over the motor driver firmware module. Each output was switched backwards

and forwards at the maximum (safe) PWM rate, and the resulting waveforms verified

against the expected waveforms. Figure 6.3 shows one such waveform, showing the left

motor output at full speed.
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Figure 6.2: Oscilloscope trace of the sensor 3.3V LDO power supply showing ripple
under static load.

Figure 6.3: Oscilloscope trace of one motor channel PWM output while active, show-
ing the frequency and duty cycle at full speed.

6.1.1.4 RGB Status LED

A simple test routine was written to cycle through all possible colours on the mounted

RGB status LED; this demonstrated that the three GPIO channels were configured

and connected correctly, and that the appropriate brightness balancing for each sub-

component in the LED package was set correctly by the chosen current limiting resistors

on the board. As this is a simple but visually attractive piece of self-diagnostics, the

test routine code was eventually retained in the final robot version during the robot’s

start-up sequence.
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6.1.1.5 LCD and Backlight

To test the board’s LCD functions, a routine calling various formatting commands

was written and wrapped around the completed LCD driver software module. These

commands—containing various cursor placements, custom character definitions and for-

matted strings—indicated that the display was indeed working as expected. For the

LCD backlight, code was written to slowly fade in the backlight brightness from the

minimum value, up to the maximum in 10ms increments. Like the RGB LED test rou-

tine, this functionality was eventually incorporated into the start-up routine of the final

robot firmware.

6.1.2 Software Testing

At the conclusion of the hardware testing, a new set of software tests were performed

on the robot firmware to ensure correct operation and compatibility with the appropri-

ate specifications. This presented its own unique set of challenges, as suitable testing

environments and testing procedures had to be developed.

6.1.2.1 USB Integration

Small software tests were performed for the three supported USB classes; HID, Mass

Storage and Bluetooth Adapters. Doubling as a test of the hardware drivers, the HID

management driver was tested against a PS3 Controller and two generic HID class USB

gaming controllers, to ensure that the appropriate buttons were mapped to the robot’s

functions. During these tests, a brown-out failure condition was observed on the USB bus

when the robot’s motors were switched on and off (or changed in direction) rapidly. This

issue was traced back to the original “AA” cell bank battery’s insufficient instantaneous

current sourcing capabilities, and was temporarily corrected in the robot prototype with

a large value capacitor on the battery input terminals (see Figure 6.4) until the more

powerful Lithium-Ion battery pack was substituted.

The Mass Storage management module (and, by extension, the FATFs library it depends

upon) was tested through a procedure of disk insertion and removal, with files written

to and read from the disk filesystem using dummy data. Thus verified, the complete

Mass Storage management file parsing routines were checked by printing the parsed file

output to the robot’s LCD display.
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Figure 6.4: Photo of the temporary main input power capacitor, to prevent brown-out
conditions from motor-induced current spikes.

As the Bluetooth Adapter management code relied upon the upper Bluetooth Stack

logical layers for correct operation, the functionality of the USB transceiver device man-

agement could not be examined and verified until the base layers on the Bluetooth

Stack were completed. However, in this phase of the software testing, the module’s abil-

ity to correctly bind to compatible Bluetooth devices in a generic manner (using several

adapters from different manufacturers) was tested and found to function as expected.

6.1.2.2 Sensor Platform

The sensor platform required a significant amount of time to complete and verify; the

final development time was close to one and a half weeks, much more than the expected

two or three days. A number of flaws were found in the written code when it was tested

on the physical robot hardware, including a bug in the LUFA USB stack’s I2C driver

for packet read and writes. Timing and other issues in the written driver for the Bosch

BMA150 accelerometer resulted first in no sensor output, followed by output on only

one channel. The root cause of this problem was eventually tracked down to misleading

datasheets, where the sensor would react correctly only if certain configuration registers

were altered in specific manners to what should have been—according to the values

given in the datasheet—the sensor’s initial power-on defaults.

During the sensor platform testing phase additional small errors relating to the format-

ting and endianness of the retrieved values were also identified and corrected.
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6.1.2.3 Bluetooth Stack

The completed Bluetooth stack was tested in an iterative manner; as additional features

and layers were completed, they were verified against existing third-party Bluetooth

devices. An invaluable tool used in the verification and debugging of each layer and pro-

tocol was the Linux “Bluez” Bluetooth stack’s hcidump tool, which allowed the robot’s

Bluetooth stack packets to be captured in real time and decoded, indicating any issues

in the implementation of one or more protocols used in the device.

Listing 6.1 shows a fragment of a HCI layer packet capture between a virtualized Linux

environment and the robot, while successfully establishing a new L2CAP channel be-

tween the two devices for SDP discovery.

dean@dean -VirtualBox :~/ Robot$ sudo hcidump l2cap

HCI sniffer - Bluetooth packet analyzer ver 2.1

device: hci0 snap_len: 1028 filter: 0x8

< L2CAP(s): Info req: type 2

> L2CAP(s): Info rsp: type 2 result 0

Extended feature mask 0x0000

< L2CAP(s): Connect req: psm 3 scid 0x0040

> L2CAP(s): Connect rsp: dcid 0x0040 scid 0x0040 result 0 status 0

Connection successful

< L2CAP(s): Config req: dcid 0x0040 flags 0x00 clen 4

MTU 1013

> L2CAP(s): Config req: dcid 0x0040 flags 0x00 clen 4

MTU 1024

< L2CAP(s): Config rsp: scid 0x0040 flags 0x00 result 0 clen 4

MTU 1024

> L2CAP(s): Config rsp: scid 0x0040 flags 0x00 result 0 clen 0

Success

< L2CAP(d): cid 0x0040 len 4 [psm 3]

> L2CAP(d): cid 0x0040 len 4 [psm 3]

Listing 6.1: HCI packet capture during a L2CAP channel configuration.

The RFCOMM layer was examined and verified at both the L2CAP layer and the

RFCOMM service layer, using the Linux rfcomm utility to bind the robot’s virtual serial

port to a virtual device node named /dev/rfcomm0. Connecting to this device through

a standard serial terminal emulator yielded the RFCOMM layer packet dump as shown

in Listing 6.2, showing the successful negotiation and configuration of a new RFCOMM

layer multiplexer channel.

Finally, the SDP layer was verified both at the L2CAP layer packet level, and at the

SDP layer using the Linux tool sdptool. This utility was used to browse the services

offered from the robot’s SDP server service, to ensure that the correct services and

service attributes were being sent to the requesting device correctly. A sample of this

SDP output is shown in Listing 6.3.
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dean@dean -VirtualBox :~/ Robot$ sudo hcidump rfcomm

HCI sniffer - Bluetooth packet analyzer ver 2.1

device: hci0 snap_len: 1028 filter: 0x10

< RFCOMM(s): SABM: cr 1 dlci 0 pf 1 ilen 0 fcs 0x1c

> RFCOMM(s): UA: cr 1 dlci 0 pf 1 ilen 0 fcs 0xd7

< RFCOMM(s): PN CMD: cr 1 dlci 0 pf 0 ilen 10 fcs 0x70 mcc_len 8

dlci 2 frame_type 0 credit_flow 15 pri 7 ack_timer 0

frame_size 1008 max_retrans 0 credits 7

> RFCOMM(s): PN RSP: cr 0 dlci 0 pf 0 ilen 10 fcs 0xaa mcc_len 8

dlci 2 frame_type 0 credit_flow 0 pri 7 ack_timer 0

frame_size 1008 max_retrans 0 credits 7

< RFCOMM(s): SABM: cr 1 dlci 2 pf 1 ilen 0 fcs 0x59

> RFCOMM(s): UA: cr 1 dlci 2 pf 1 ilen 0 fcs 0x92

< RFCOMM(s): MSC CMD: cr 1 dlci 0 pf 0 ilen 4 fcs 0x70 mcc_len 2

dlci 2 fc 0 rtc 1 rtr 1 ic 0 dv 1 b1 1 b2 1 b3 0 len 0

> RFCOMM(s): MSC CMD: cr 0 dlci 0 pf 0 ilen 4 fcs 0xaa mcc_len 2

dlci 2 fc 0 rtc 1 rtr 1 ic 0 dv 1 b1 1 b2 1 b3 0 len 0

< RFCOMM(s): MSC RSP: cr 1 dlci 0 pf 0 ilen 4 fcs 0x70 mcc_len 2

dlci 2 fc 0 rtc 1 rtr 1 ic 0 dv 1 b1 1 b2 1 b3 0 len 0

> RFCOMM(s): MSC RSP: cr 0 dlci 0 pf 0 ilen 4 fcs 0xaa mcc_len 2

dlci 2 fc 0 rtc 1 rtr 1 ic 0 dv 1 b1 1 b2 1 b3 0 len 0

> RFCOMM(d): UIH: cr 0 dlci 2 pf 0 ilen 47 fcs 0x40

Listing 6.2: RFCOMM service packet capture during a multiplexer channel
establishment.

dean@dean -VirtualBox :~/ Robot$ sudo sdptool browse --tree

Browsing 00:11:67: BE :07:26 ...

Attribute Identifier : 0x0 - ServiceRecordHandle

Integer : 0x10000

Attribute Identifier : 0x1 - ServiceClassIDList

Data Sequence

UUID128 : 0x00001101 -0000 -1000 -8000 -00805f9b -34fb

Attribute Identifier : 0x4 - ProtocolDescriptorList

Data Sequence

Data Sequence

UUID128 : 0x00000100 -0000 -1000 -8000 -00805f9b -34fb

Data Sequence

UUID128 : 0x00000003 -0000 -1000 -8000 -00805f9b -34fb

Channel/Port (Integer) : 0x1

Attribute Identifier : 0x5 - BrowseGroupList

Data Sequence

UUID128 : 0x00001002 -0000 -1000 -8000 -00805f9b -34fb

Attribute Identifier : 0x6 - LanguageBaseAttributeIDList

Data Sequence

Code ISO639 (Integer) : 0x454e

Encoding (Integer) : 0x6a

Base Offset (Integer) : 0x100

Attribute Identifier : 0x100

Data : 57 69 72 65 6c 65 73 73 20 53 65 72 69 61 6c 20 50 6f 72 74 00

Attribute Identifier : 0x101

Data : 57 69 72 65 6c 65 73 73 20 53 65 72 69 61 6c 20 50 6f 72 74 20 53 65 72

76 69 63 65 00

Listing 6.3: Capture of the services and attributes exposed by the robot’s SDP server.
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6.2 Achieved Results

At the conclusion of the project time frame, much of the project goals had been achieved.

The completed robot hardware was demonstrated as working with a variety of off-the-

shelf consumer grade Bluetooth products, including the Playstation 3 controller, Nin-

tendo Wii controller and a Sony Ericsson z550i mobile phone running its included Blue-

tooth Remote Control application (see Figure 6.5). The Bluetooth stack developed for

the project was found to be functional enough to operate with these devices without

special modifications being required to either the robot or the Bluetooth controllers.

Figure 6.5: Tested consumer grade Bluetooth enabled devices:
Playstation 3 controller (left), Nintendo Wii controller (middle), Sony-Ericsson z550i

mobile phone (right).

All the robot’s sensors and other hardware drivers worked correctly, with the user able

to control the robot’s movement, headlights and horn over both wired USB and wireless

Bluetooth HID connections. Sensor data was able to be streamed remotely to a PC or

other Bluetooth enabled device supporting the RFCOMM wireless serial port profile.

Listing 6.4 shows a sample of the streaming sensor data captured from the robot.

dean@dean -VirtualBox :~/ Robot$ cat /dev/rfcomm0

204 ,516 , -54 , -51 ,19 ,243 ,40 ,120 ,39 ,42856 , -16668

199 ,513 , -55 , -52 ,21 ,244 ,45 ,118 ,33 ,42858 , -16668

206 ,512 , -56 , -51 ,21 ,243 ,45 ,117 ,31 ,42854 , -16668

201 ,521 , -57 , -51 ,21 ,241 ,42 ,127 ,33 ,42856 , -16672

205 ,511 , -59 , -52 ,22 ,243 ,34 ,128 ,37 ,42858 , -16667

200 ,514 , -58 , -52 ,20 ,242 ,36 ,121 ,36 ,42865 , -16666

204 ,516 , -56 , -54 ,22 ,242 ,39 ,121 ,34 ,42856 , -16666

204 ,510 , -58 , -53 ,22 ,244 ,40 ,124 ,38 ,42865 , -16673

205 ,517 , -53 , -54 ,21 ,243 ,41 ,128 ,40 ,42859 , -16662

Listing 6.4: Captured RFCOMM streaming sensor data.
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A simple C# application was written to display the streaming sensor data graphically

to the user in real time (see Figure 6.6). The robot firmware was capable of maintain-

ing both the streaming sensor data connection as well as a secondary connection to a

Bluetooth controller simultaneously, allowing for user control of the robot while a PC

graphs the retrieved sensor values.

Figure 6.6: Sensor logging application, showing data streaming wirelessly from the
connected robot via a Bluetooth virtual serial port.

The completed robot PCB hardware was integrated into a pre-fabricated off-the-shelf

robot platform base, and linked to the two wheel mounted DC motors. Additional parts

for the rear PCB retention clip and frontal headlight and horn mounting were designed

by the project’s Co-Supervisor Robert Ross, and printed out on the University’s 3D

printer. This resulted in the compact and functional robot prototype shown in Figure

6.7.
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Figure 6.7: Photo of the completed ExplorerBot prototype robot.



Chapter 7

Project Discussion

In this chapter, the project’s issues (and their solutions) are discussed in detail, as is

the implications and impact of the project as a whole. The various phases of the project

provided ample opportunities for problem solving, both in hardware and software as the

project’s development progressed.

7.1 Issues Faced

During the development of the project, as expected a number of issues were faced and

overcome. The probability of unexpected issues arising during the development of any

non-trivial project rises exponentially with its complexity, and this project was no ex-

ception. The main issues are outlined below, along with the solution chosen.

7.1.1 Micropendous Pinout PCB Error

After the manufacture of the first revision PCB was received some weeks after the order

was placed, a problem was discovered in the board layout of the main Micropendous

microcontroller module: the pinouts appeared to have been shifted by one around the

entire module perimeter. The root issue cause was traced back to the custom Altium

component created for the module; for an inexplicable reason, Altium begins part com-

ponent schematic pin numbering from pin 0, instead of the conventional pin 1. This

resulted in the pin numbering around the module to be rotated by one place during

board layout.

Coincidentally, as the unroutable pins were marked as No-Connect in the robot schemat-

ics (due to their unused functions) the Altium DRC module reported no schematic or
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routing errors. This resulted in the error not being caught until the board manufac-

turing had been completed, as a cursory visual inspection of the board layout before

production did not catch the subtle pin numbering problem.

While it is possible that the board pinouts could have been corrected with manual trace

cutting and re-wiring, the scale of the error—some fifty two pins—and the need for other

slight board adjustments forced the decision to produce a second, corrected, version of

the PCB.

7.1.2 Incorrect Transistor Pinout

During the component ordering phase of the project, an issue was discovered; no NPN

transistors could be found in the appropriate SOT-323 footprint that matched the

pinouts given by the Altium library component used. To correct this error, it was

necessary to mount the transistors flipped upside-down. This inverted orientation cor-

rected the transistor pinouts (see Figure 7.1) so that they could be mounted to the board

with the application of a small amount of extra solder to bridge the inverted pins to the

PCB.

Figure 7.1: Pin-outs of the SOT-323 transistor when mounted normally (left) and
flipped (right).

7.1.3 Motor Induced Current Spikes

During the testing phase of the robot, a failure of the USB AVR microcontroller’s USB

interface was observed when the motor direction was altered rapidly. Further observation

narrowed this down to the switching latency of the chosen inverter transistor (30nS)

and H-Bridge (approx. 2µS). During this time both halves of the H-Bridge are enabled,

resulting in the possibility of a momentary short in the system battery, if the motor

PWM output signal is enabled during the switching period.

To counteract this, a delay was introduced into the robot’s motor driver firmware, to

disable the motor output PWM during the switching time. This delay eliminated the

high switching current due to the momentary short of the battery, thus preventing the

microcontroller USB interface from failing.
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Related to the above issue was the motor inrush current, present any time the motor

was started from a stationary state. This current, present in all motors under load while

the static friction in the motor is overcome, caused large current draw spikes in the main

power supply, triggering a destabilization of the main switchmode regulator and thus a

brownout of the main microcontroller. This issue was corrected once the main battery

was switched from a series of six “AA” cell batteries to a much higher rated Lithium-Ion

based battery pack.

7.1.4 PCA9306 Physical Package

Despite having some familiarity with hand-soldering somewhat-small multi-pin surface

mount IC components, the package used by the PCA9306 I2C level converter presented

a serious challenge. This was due to its US-8 package; measuring just 2.7mm x 4.5mm,

the component contains eight pins, each just .3mm wide.

Rather than risk destroying the component and waiting additional weeks for a replace-

ment, the LaTrobe University Workshop was requested to use a hot-air gun to solder the

device to the robot PCB. This ensured that the component would be correctly placed

and soldered without a high risk of component damage. In future projects, relatively

cheap components such as this should be ordered with one or more extras added to the

quantity, so that damaged components (if any) can be replaced immediately without

incurring additional delays while new components are ordered.

7.1.5 L298D Unavailability

In the first PCB revision, the motor controller design centered around the L298D H-

Bridge component, which offered logic level inputs, high current/voltage driver outputs,

and convenient internal flyback diodes. These flyback diodes—used to dissipate reverse

EMF generated by the motor coils’ inductance as they are turned on and off—are a

critical part of any such circuit involving inductive loads to prevent damage to the

driver.

At the time of ordering however, it was discovered that the L298D variant was not readily

available from the University’s approved component suppliers. As a second revision of

the PCB was already required due to the pinout error of the Micropendous module

discussed earlier, a set of external flyback diodes were added on the underside of the

board, and the L298N H-Bridge IC used as a substitute. Identical in every other way

to the L298D, the L298N variant does not contain internal flyback diodes.
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7.1.6 Unreliable Bluetooth Packet Buffering

During development, it was found that occasionally packets sent via the Bluetooth

interface were (apparently) being ignored by the receiving device — this was especially

apparent during the L2CAP layer channel initialization and configuration phases. In

many instances, a channel would fail to configure at all, causing the remote device

connection to time out.

After further investigation, it was determined that the problem source was the lack of

a reliable packet buffer within the device; if a packet was delayed within the external

Bluetooth HCI controller silicon, the controller would reject new packets for transmis-

sion. Without a buffer, these rejected packets for transmission would be lost. Ideally,

this could be solved by indicating to the controller that only buffer-related event packets

should be returned to the host while the controller is busy, to allow for a polled busy-

wait scheme to be used to determine the controller’s readiness. However, there is no

mechanism to delay incoming L2CAP data packets from the controller during this stage

in the HCI specifications, which could potentially result in dropped received packets.

To solve this, the stack’s L2CAP layer was extended to include its own internal reliable

packet transmission scheme, in the form of a small event queue. As channel events were

received or generated internally, the pending event would be added to a reliable queue.

When a transmission is attempted, these events are only removed from the queue if the

transmission was successful (see Chapter 3).

This scheme results in a reliable L2CAP layer, without the use of a large internal packet

buffer within the device. Additional similar schemes could potentially be added to the

higher level service layers, however this was not found to be necessary for the project’s

firmware.

7.1.7 PS3 Controller Compatibility

Sony’s Playstation 3 controller presented several small difficulties in making it com-

patible with the rest of the system. While the controller itself implements the standard

HID profiles in both wired USB and wireless Bluetooth modes, additional device-specific

software tweaks are necessary for compatibility.

When plugged in as a wired controller via the USB interface, a special HID Feature

packet must be sent to the controller over the logical HID interface, via the USB Control

endpoint [19]. This packet, directed to the HID report ID 0xF4 and containing the

special “magic” bytes 0x42 0x0C 0x00 0x00, it is used to enable general controller
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reports through the regular HID data endpoints. Without this packet, the controller

will not send any state change information to the host. In Bluetooth mode, the magic

packet required for Bluetooth HID reporting is 0x42 0x03 0x00 0x00.

A second packet during initialization is also required, another HID Feature packet di-

rected at the HID Report ID 0xF5. Prefixed with the bytes 0x01 0x00, this request

packet data is followed by the six octets of the host’s Bluetooth device address, to pair

the controller to the specified address. This is in contrast with the general Bluetooth

pairing mechanism, which usually involves a device discovery and authentication phase

over the Bluetooth link.

The two initialization packets for USB HID reporting and Bluetooth address pairing are

shown in Listing 7.1.

if (Joystick_IsPS3Controller)

{

/* Read out the latest inserted bluetooth adapter address stored in EEPROM */

BDADDR_t TempAddress;

eeprom_read_block(TempAddress , BluetoothAdapter_LastLocalBDADDR ,

sizeof(BDADDR_t));

/* Send PS3 bluetooth host pair request report to the adapter */

uint8_t AdapterPairRequest [] = {0x01 , 0x00 , TempAddress [5], TempAddress [4],

TempAddress [3], TempAddress [2],

TempAddress [1], TempAddress [0]};

HID_Host_SendReportByID (& Joystick_HID_Interface ,

0xF5 , HID_REPORT_ITEM_Feature ,

AdapterPairRequest , sizeof(AdapterPairRequest));

/* Instruct the PS3 controller to send reports via the HID data IN endpoint */

uint8_t StartReportingRequest [] = {0x42 , 0x0C , 0x00 , 0x00};

HID_Host_SendReportByID (& Joystick_HID_Interface ,

0xF4 , HID_REPORT_ITEM_Feature ,

StartReportingRequest , sizeof(StartReportingRequest));

}

Listing 7.1: Playstation 3 specific initialization code.

7.1.8 Misleading Sensor Datasheets

During the development of the sensor hardware drivers, inconsistencies and misleading

portions of the datasheets caused significant confusion and difficulties in attempting

to establish a functional data stream from the attached sensor devices. In the case of

the Bosch BMA150 accelerometer, this issue was traced back to an apparent error in

the datasheet [20]; despite indicating an initial value of 0x00 for the control register

at address 0x0A (see Figure 7.2), the sleep control bit had to be manually cleared on

start-up for the sensor to function correctly.
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Figure 7.2: Table from the BMA150 sensor datasheet [20], showing the initial start-
up values of the sensor’s registers. Note the highlighted control register’s stated default

value.

7.1.9 Cheap Bluetooth Dongles

A collection of cheap USB Bluetooth dongles were purchased for the development of

the robot; it was intended that these be used for testing, as well as for the final robot

communications to a laptop computer running the developed sensor graphing applica-

tion. However, after numerous connection failures between to similar dongles, it was

discovered that several of the purchased transceiver modules contain invalid Bluetooth

Device Address values.

The BDADDR values present in each Bluetooth device is intended to be used as a

unique MAC identifier to distinguish between devices at the baseband level, however a

number of the dongles—despite different physical appearances in some cases—contained

the same “unique” address value (see Figure 7.3). When presented with the task of

connecting to the same BDADDR as the local adapter, modern PC operating systems

would reject the otherwise valid request.

Other oddities in the Bluetooth HCI implementation within the several of the purchased

devices was observed; in one instance, the Bluetooth adapter would accept a Bluetooth

HCI layer reset command, but would fail to reset its HCI layer state correctly.
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Figure 7.3: Photo of purchased Bluetooth USB adapters with incorrect Bluetooth
Device Addresses.

7.2 Project Significance

This project represents a significant impact to the open source and embedded systems

communities. It gives a free, open source Bluetooth stack in a new form, paving the way

for a new generation of low cost Bluetooth devices. These new devices, using low powered

processors previously deemed unsuitable for the task of complex Bluetooth interactions,

will give users a new rich landscape of system integration and communication.

While other wireless technologies already in use will remain just as important as they

are today, this project gives a new avenue of development for products that can interact

directly with off-the-shelf consumer devices. Modern smart-phones, tablet computers

and laptops now contain Bluetooth radios as standard features; the stack presented in

this project will open up these devices to direct communication with embedded systems

without the need for obscure wireless transceiver dongles. In the future, this type of

technology will allow for system monitoring and configuration over a wireless link with

compatible consumer devices using a rich UI, instead of wired solutions or expensive

local displays and buttons.
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Conclusion

The purpose of this project was to research, design and implement a functional Embed-

ded Bluetooth Stack for inclusion in small-scale embedded environments. A secondary

goal of the project was to design, manufacture and test a practical implementation

of an embedded project using this stack to demonstrate the stack’s completeness and

practicality in a real-world environment.

To date, both of these goals have been achieved to some degree; the Bluetooth stack

was completed to a functional state suitable for use in some environments, and a work-

ing Bluetooth controlled robot was completed to a point where it could interact with

consumer Bluetooth devices wirelessly over several protocols. Several areas of the Blue-

tooth stack warrant future expansion and refinement, but the code as-is demonstrates

a solid platform onto which a rich variety of low-cost Bluetooth enabled devices can be

implemented.

8.1 Project Success

Measuring the success of a project is a difficult task; one has to take into account the

original goals of the project, the time frames set for each goal, and make allowances for

changes to these goals and project specifications in response to technical and physical

challenges faced in the course of completing the project. Several unexpected delays

in obtaining a correct PCB from the board manufacturer threatened to push out the

time frames allotted for the physical robot construction by several weeks, and supply

problems in obtaining several parts caused delays due to the need to revise the PCB

design around alternative parts.
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Despite these setbacks, the project can objectively be shown as a success overall —

the objectives of the project were met, and a completed working robot was produced

running from the Bluetooth stack within the allotted project time frame.

8.2 Future Work

While functional, the Bluetooth stack at the point of the project’s end was not complete.

Several areas have been identified for improvement, which at the point of writing prevent

the stack from being used in some environments. These areas are listed below.

8.2.1 Reliable Packet Buffering and Retransmissions

The L2CAP layer of Bluetooth has several similarities to the TCP/IP network stack of

a modern computer network; messages transmitted through an established link are con-

sidered to be reliable, that is, messages sent will attempt retransmission automatically if

they are not correctly processed by the remote device. For this mechanism to function,

a retransmission timer must be implemented, and an outgoing packet buffer added into

the system to buffer packets and re-send them in the event that the remote end does

not respond in the correct manner within the specified timeout period.

For the purposes of the project, such a reliable buffer and timeout system was not im-

plemented due to time constraints. A special reliable event system was included in the

L2CAP management layer to ensure that channels are correctly negotiated regardless

of the presence or lack of such a buffering layer, however the Bluetooth services imple-

mented on top of the L2CAP layer do not contain such a mechanism. This can result

in messages sent from the upper Bluetooth services to be lost and the service put into

a lock-up state until the connection to the non-responsive remote device is reset.

Future stack development would implement a system where either the services are ex-

panded to reliably manage their state internally, or the lower layers extended to require

the addition of a reliable packet buffer and timeout service.

8.2.2 Packet Reception Fragmentation Support

A large component of modern communication systems in the concept of data packeting

and fragmentation, the act of splitting up a larger communication message into a set

of smaller discrete units for individual transfer. Bluetooth is no exception to this; each

logical layer within the Bluetooth specification may specify a maximum fragment size
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to a remote device, above which large messages are split into smaller chunks. These

fragments must then be received individually and reconstructed to obtain the original

message.

In the Bluetooth stack written for the project, outgoing packets are correctly fragmented

into sizes appropriate for the receiving device, however received packets do not currently

run through a reassembly layer. In lieu of this feature, the stack requires that the local

device is capable of receiving packets in their entirety up to the maximum single packet

size as defined by the Bluetooth 2.1 specifications, that of 64KB [21]. For the stack to

be considered feature complete, fragmentation reassembly support should be added at

a later stage.

8.2.3 Expansion of Bluetooth Services

Only a small subset of the standardized Bluetooth services were implemented in the

stack for the project, and of those implemented, only the specific roles (device or server)

required for the robot’s functionality were completed. Future expansion of the project

would require the completion of the existing services for both roles, as well as the addition

of other Bluetooth classes such as the Bluetooth Personal Networking (PAN) service for

wireless networking.

8.2.4 Additional Physical Transports

The Bluetooth 2.1 specification defines additional physical transport mediums [2], for

the transport of HCI packets between the Bluetooth Host Controller and the applica-

tion Microcontroller. Callback hooks from the stack are supplied for the user-supplied

implementation of any desired transport mechanism, however for the project only the

USB transport was implemented. Future development of the stack should implement the

most widely used transport medium—i.e. the UART serial HCI packet transport—so

that Bluetooth HCI controllers may be installed directly on the PCB alongside the main

microcontroller in an embedded device.

8.3 Final Words

While the formal portion of this project is now complete, I look forward to the continuing

development and discussion of the project in my spare time; now that a solid base has

been written, future work may be performed at my leisure to move the project out of

the academic environment and into real-world use. The next critical step in this project
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is the construction of a community around the stack’s development, so as to gain new

ideas, bug reports and community contributions.

From the development of this project I was able to gain valuable experience in building

real-world projects. I was able to practice proper project time management and goal-

based development, and experience the realities of PCB manufacturing delays, com-

ponent shortages and tight deadlines. This experience has enriched my engineering

abilities, and I now feel confident in moving towards my imminent professional future

with these new skills and knowledge.



Abbreviations

API Application Programming Interface

AVR This isn’t an acronym. Officially, at least.

BDADDR Bluetooth Device Address

CPU Central Processing Unit

DC Direct Current

DRC Design Rule Check

EEPROM Electrically Erasable Programmable Read Only Memory

EMF Electromotive Force

FAT File Allocation Table

GPIO General Purpose Input/Output

HCI Host Controller Interface

HID Human Interface Device

IC Intergrated Circuit

I2C Inter Integrated Circuit Bus

IP Intellectual Property

JTAG Joint Test Action Group

L2CAP Logical Link Control and Adaption Protocol

LCD Liquid Crystal Display

LDO Low-Dropout (Regulator)

LED Light Emitting Diode

LUFA Lightweight USB Framework for AVRs

MAC Media Access Control

PC Personal Computer

PCB Printed Circuit Board

PLL Phase Locked Loop
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PWM Pulse Width Modulation

RFCOMM Radio Frequency Communication

RTOS Real Time Operating System

SDP Service Discovery Protocol

SRAM Static Random Access Memory

TCP/IP Transmission Control Protocol / Internet Protocol

UART Universal Asynchronous Receiver Transmitter

UI User Interface

USB Universal Serial Bus

UUID Universally Unique Identifier



Appendix A

Robot User Guide

In this section, the basic operation of the completed ExplorerBot robot hardware is

outlined. An annotated diagram of the completed robot design is shown in Figure A.1

below.

Figure A.1: Annotated diagram of the ExplorerBot robot.
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A.1 Power Requirements

The robot requires a 6-9V DC input power supply, capable of supplying up to 1A of

current. Ideally, a 7.2V Lithium Ion battery should be used for this purpose for maximum

operating time (due to its ability to supply large amount of instantaneous current, used

by the motors when switched on).

A.2 Supported USB Devices

Several classes of USB devices are supported by the robot firmware. Where possible,

each class is supported in a generic manner, so that any device compliant with the

relevant USB class specification can be used.

A.2.1 HID Class Devices

For robot control over a wired interface, USB HID class devices may be inserted into

the robot’s USB receptacle. Compatible HID devices must contain at least one four-way

directional pad and four buttons for all robot features to be operational. The button

mappings are listed in Table A.1 below.

Function PS3 Controller Other HID Device

Left D-Pad Left Button 1

Forward D-Pad Up Button 2

Backward D-Pad Down Button 3

Right D-Pad Right Button 4

Headlights (Momentary) R2 Button 8

Horn L2 Button 6

Headlights (Toggle) R1 Button 7

Novelty Horn L1 Button 5

Table A.1: Button mappings between various supported USB HID devices and the
robot’s functions.
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In the special case of a Playstation 3 controller being inserted into the robot, the con-

troller will be automatically configured to pair over Bluetooth with the address of the

last Bluetooth USB adapter inserted into the robot. Once paired, the controller may

then establish a connection with the robot over Bluetooth by pressing the PS3 button

located in the center of the controller.

A.2.2 Mass Storage Class Devices

Flash drives suitably formatted with a FAT32 filesystem may be used for sensor logging

and system configuration of the robot. Compatible memory sticks must be no more than

4GB in size.

Upon insertion, the robot will attempt to read a file named REMADDR.TXT from the disk.

This file should contain the Bluetooth Device Address of the remote device the robot

should attempt to establish a connection with while in Bluetooth mode. The format

of the stored address is XX:XX:XX:XX:XX:XX, where each XX represents one of the six

consecutive octets of the remote device’s address in hexadecimal format. If such a file

does not exist on the attached disk, a new file is created and populated with the currently

stored remote device address.

Also during insertion, a second file called SENSLOG.CSV will be opened. If this file does

not exist, a new file is created and populated with the names of the robot’s sensors in

Comma Separated Values (CSV) format. To begin logging of the robot’s sensor data to

the attached disk, press the Mode-Specific button next to the LCD.

A.2.3 Bluetooth Adapter Devices

All USB Bluetooth adapters conforming to the Bluetooth 2.1 specification for USB

Bluetooth HCI data transport are supported by the robot for Bluetooth mode. When a

new adapter device is inserted, the fixed local Bluetooth Address of the adapter is stored

into the robot’s internal non-volatile EEPROM, for later pairing with any attached

Playstation 3 controllers.

To initiate a connection to a remote device, using the address previously stored in via a

configuration file read from an inserted Mass Storage Device, the Mode-Specific button
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next to the LCD should be pressed. This will attempt a connection to the stored remote

device address, with the connection result being displayed onto the LCD.

All incoming connection and channel requests to the robot will be automatically ac-

cepted, however only data carried over the robot’s supported services will be processed.

Connection and channel information is displayed onto the robot’s LCD.

A.3 Supported Bluetooth Services

The robot currently supports three externally exposed services; Service Discovery Pro-

tocol, Human Interface Devices, and RFCOMM serial. Other services are not supported

and data sent via non-supported services will be ignored by the robot firmware.

A.3.1 SDP Service

The Service Discovery Protocol service is implemented in a Server role only, and is used

to expose the remaining services within the robot to external Bluetooth devices during

the service discovery phase. All types of server-role requests are supported by the robot.

When requested, the robot will indicate that the device supports the RFCOMM as a

server role. This information is used by PCs to automatically allocate and configure a

Virtual Serial Port for the robot, used to carry streaming sensor information.

A.3.2 HID Service

The Human Interface Device service is implemented as a client only; the robot accepts

reports from external devices, and processes them to determine what actions (if any)

must be taken. At present, only three Bluetooth HID devices are supported:

1. Sony Playstation 3 controllers,

2. The Sony-Ericsson z550i mobile phone, and

3. Nintendo Wii controllers.
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With a client implementation of the SDP service, this service could be extended to

support Bluetooth HID devices in a generic manner. In the case of the first two supported

devices, connections may be established to the robot from the HID device itself. For the

Nintendo Wii controller, the connection must be initiated locally from the robot. The

robot button mappings for these devices are shown in Table A.2 below.

Function PS3 Controller z550i Phone Wii Controller

Left D-Pad Left Navigation Left D-Pad Left

Forward D-Pad Up Navigation Up D-Pad Up

Backward D-Pad Down Navigation Down D-Pad Down

Right D-Pad Right Navigation Right D-Pad Right

Headlights (Momentary) R2 Right Button Button B

Horn L2 Left Button Button A

Headlights (Toggle) R1 N/A Button +

Novelty Horn L1 N/A Button -

Table A.2: Button mappings between the various supported Bluetooth HID devices
and the robot’s functions.

A.3.3 RFCOMM Service

For remote wireless streaming of the robot’s sensor data, the RFCOMM wireless Virtual

Serial Port service is implemented as a server role. Connecting to the robot via this

service using a PC will cause the robot to stream out the current values of the sensors

in CSV format. When the virtual serial port connection is first opened, the robot will

output the human readable names of each sensor before the sensor values. Only one

RFCOMM session may be active at one time.
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Source Code

The complete project source code is available for download online, due to its significant

size. Both the robot firmware and the embedded Bluetooth stack may be viewed and

modified according to the licence agreements included at the top of each source file in

the download package.

B.1 Obtaining the Source Code

All relevant material relating to this project (including source code, schematics, and this

document) may be obtained from the official project page, located at

http://www.fourwalledcubicle.com/ExplorerBot.php.

B.2 Build Dependencies

The Bluetooth stack and robot firmware was written in the C language, and targeted

at the free open source AVR-GCC compiler and avr-libc library. A standard makefile

included with the firmware allows for command line control over the building of the

project files into a set of binaries which can then be programmed into the target micro-

controller for use via the command make all. The following tools are required to build

the firmware under Windows:

84
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• The WinAVR 20100101 release download, or Windows binaries of the GNU

Shell Utilities

• The latest AVR Toolchain release download from Atmel (included with Atmel’s

free AVRStudio 5 software)

Under Debian Linux environments, the following packages are required:

• gcc-avr

• binutils-avr

• avr-libc

• avrdude

Which can be installed via the command prompt using the command sudo apt-get

install gcc-avr binutils-avr avr-libc avrdude.



Appendix C

Schematics

C.1 Robot Schematics

The following pages illustrate the complete schematics of the ExplorerBot robot hard-

ware created to demonstrate a practical application of the Bluetooth stack. These are

reproduced in logical block form, for each main functionality block of the finished robot

hardware.
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